Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436918

RESUMO

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

2.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339702

RESUMO

In this study, a novel electrochemical sensor was created by fabricating a screen-printed carbon electrode with diamond nanoparticles (DNPs/SPCE). The successful development of the sensor enabled the specific detection of the anti-cancer drug flutamide (FLT). The DNPs/SPCE demonstrated excellent conductivity, remarkable electrocatalytic activity, and swift electron transfer, all of which contribute to the advantageous monitoring of FLT. These qualities are critical for monitoring FLT levels in environmental samples. Various structural and morphological characterization techniques were employed to validate the formation of the DNPs. Remarkably, the electrochemical sensor demonstrated a wide linear response range (0.025 to 606.65 µM). Additionally, it showed a low limit of detection (0.023 µM) and high sensitivity (0.403 µA µM-1 cm-2). Furthermore, the practicability of DNPs/SPCE can be successfully employed in FLT monitoring in water bodies (pond water and river water samples) with satisfactory recoveries.


Assuntos
Antineoplásicos , Nanopartículas , Flutamida/química , Nanopartículas/química , Carbono/química , Água , Técnicas Eletroquímicas/métodos , Eletrodos
3.
Environ Res ; 216(Pt 2): 114609, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272591

RESUMO

Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 µA µÐœ-1 cm-2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.


Assuntos
Carbono , Poluentes Ambientais , Carbono/química , Técnicas Eletroquímicas , Porosidade , Ligas , Reprodutibilidade dos Testes , Ecossistema , Água , Zinco
4.
Nanomedicine ; 48: 102652, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623714

RESUMO

Metal-organic frameworks (MOFs) have emerged as attractive candidates in cancer theranostics due to their ability to envelop magnetic nanoparticles, resulting in reduced cytotoxicity and high porosity, enabling chemodrug encapsulation. Here, FeAu alloy nanoparticles (FeAu NPs) are synthesized and coated with MIL-100(Fe) MOFs to fabricate FeAu@MOF nanostructures. We encapsulated Doxorubicin within the nanostructures and evaluated the suitability of this platform for medical imaging and cancer theranostics. FeAu@MOF nanostructures (FeAu@MIL-100(Fe)) exhibited superparamagnetism, magnetic hyperthermia behavior and displayed DOX encapsulation and release efficiency of 69.95 % and 97.19 %, respectively, when stimulated with alternating magnetic field (AMF). In-vitro experiments showed that AMF-induced hyperthermia resulted in 90 % HSC-3 oral squamous carcinoma cell death, indicating application in cancer theranostics. Finally, in an in-vivo mouse model, FeAu@MOF nanostructures improved image contrast, reduced tumor volume by 30-fold and tumor weight by 10-fold, which translated to enhancement in cumulative survival, highlighting the prospect of this platform for oral cancer treatment.


Assuntos
Carcinoma , Hipertermia Induzida , Estruturas Metalorgânicas , Neoplasias Bucais , Nanoestruturas , Animais , Camundongos , Estruturas Metalorgânicas/química , Medicina de Precisão , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/tratamento farmacológico , Diagnóstico por Imagem , Fenômenos Magnéticos , Nanomedicina Teranóstica
5.
Nanomedicine ; 50: 102673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37044193

RESUMO

Herein, we fabricated gold surface-coated iron titanium core-shell (FeTi@Au) nanoparticles (NPs) with conjugation of angiopep-2 (ANG) (FeTi@Au-ANG) NPs for targeted delivery and improved NPs penetration by receptor-mediated endocytosis to achieve hyperthermic treatment of gliomas. The synthesized "core-shell" FeTi@Au-ANG NPs exhibited spherical in shape with around 16 nm particle size and increased temperature upon alternating magnetic field (AMF) stimulation, rendering them effective for localized hyperthermic therapy of cancer cells. Effective targeted delivery of FeTi@Au-ANG NPs was demonstrated in vitro by improved transport and cellular uptake, and increased apoptosis in glioma cells (C6) compared with normal fibroblast cells (L929). FeTi@Au-ANG NPs exhibited higher deposition in brain tissues and a superior therapeutic effect in an orthotopic intracranial xenograft mouse model. Taken together, our data indicate that FeTi@Au-ANG NPs hold significant promise as a targeted delivery strategy for glioma treatment using hyperthermia.


Assuntos
Glioma , Hipertermia Induzida , Nanopartículas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Ouro/uso terapêutico
6.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299943

RESUMO

Surface plasmon resonance (SPR) sensing is a real-time detection technique for measuring biomolecular interactions on gold surfaces. This study presents a novel approach using nano-diamonds (NDs) on a gold nano-slit array to obtain an extraordinary transmission (EOT) spectrum for SPR biosensing. We used anti-bovine serum albumin (anti-BSA) to bind NDs for chemical attachment to a gold nano-slit array. The covalently bound NDs shifted the EOT response depending on their concentration. The number of ND-labeled molecules attached to the gold nano-slit array was quantified from the change in the EOT spectrum. The concentration of anti-BSA in the 35 nm ND solution sample was much lower than that in the anti-BSA-only sample (approximately 1/100). With the help of 35 nm NDs, we were able to use a lower concentration of analyte in this system and obtained better signal responses. The responses of anti-BSA-linked NDs had approximately a 10-fold signal enhancement compared to anti-BSA alone. This approach has the advantage of a simple setup and microscale detection area, which makes it suitable for applications in biochip technology.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Ouro/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Nanotecnologia , Diamante
7.
BMC Oral Health ; 23(1): 900, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990212

RESUMO

BACKGROUND: The prevalence of oral diseases among Taiwanese prisoners has rarely been investigated. This study aimed to estimate the gender-specific prevalence of oral disease in a sample of Taiwanese prisoners. METHODS: We included 83,048 participants from the National Health Insurance (NHI) Program. Outcomes were measured using the clinical version of the International Classification of Diseases, Ninth Revision (ICD-9-CM). For prevalence, we provide absolute values and percentages. We also performed a χ2 test to assess sex and age group differences in the percentage of disease in the oral cavity, salivary glands, and jaw. RESULTS: The prevalence rate of oral diseases was 25.90%, which was higher than that of the general population. The prevalence of oral diseases in female prisoners was higher than that in male prisoners (p < 0.001), and the prevalence of oral diseases in prisoners aged ≤ 40 was higher than that of prisoners aged > 40. Among all cases of diagnosed oral diseases, the top three diseases were dental hard tissue diseases (13.28%), other cellulitis and abscesses (9.79%), and pruritus and related conditions (2.88%), respectively. The prevalence of various oral diseases in female prisoners was significantly higher than that in male prisoners. CONCLUSION: Oral disease is common among Taiwanese prisoners. Female prisoners had a higher prevalence of oral, salivary gland, and jaw diseases than male prisoners. Therefore, early prevention and appropriate treatment are required and also a need for gender-specific oral disease products given the differences in the prevalence of oral disease among male and female prisoners.


Assuntos
Saúde Bucal , Prisioneiros , Humanos , Masculino , Feminino , Estudos Transversais , Fatores Sexuais , Taiwan/epidemiologia , Prevalência
8.
Small ; 18(35): e2202516, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35950565

RESUMO

Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Anticorpos Imobilizados/química , Carbono , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Humanos , Imunoensaio/métodos , Insulina , Limite de Detecção , Nanopartículas Metálicas/química , Nitrogênio , Porosidade , Reprodutibilidade dos Testes , Zinco
9.
BMC Public Health ; 22(1): 2280, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474217

RESUMO

BACKGROUND: To investigate the risk of poor prognosis regarding schizophrenic disorders, psychotic disorders, suicide, self-inflicted injury, and mortality after adult violence from 2000 to 2015 in Taiwan. METHODS: This study used data from National Health Insurance Research Database (NHIRD) on outpatient, emergency, and inpatient visits for two million people enrolled in the National Health Insurance (NHI) from 2000 to 2015. The case study defined ICD-9 diagnosis code N code 995.8 (abused adult) or E code E960-E969 (homicide and intentional injury of another). It analyzed first-time violence in adults aged 18-64 years (study group). 1:4 ratio was matched with injury and non-violent patients (control group). The paired variables were sex, age (± 1 year), pre-exposure to the Charlson comorbidity index, and year of medical treatment. Statistical analysis was conducted using SAS 9.4 and Cox regression for data analysis. RESULTS: In total, 8,726 individuals experienced violence (case group) while34,904 did not experienced violence (control group) over 15 years. The prevalence of poor prognosis among victims of violence was 25.4/104, 31.3/104, 10.5/10,4 and 104.6/104 for schizophrenic disorders, psychotic disorders, suicide or self-inflicted injury and mortality, respectively. Among adults, the risks of suicide or self-inflicted injury, schizophrenic disorders, psychotic disorders, and mortality after exposure to violence (average 9 years) were 6.87-, 5.63-, 4.10-, and 2.50-times (p < 0.01), respectively, compared with those without violence. Among males, the risks were 5.66-, 3.85-, 3.59- and 2.51-times higher, respectively, than those without violence (p < 0.01), and they were 21.93-, 5.57-, 4.60- and 2.46-times higher than those without violence (p < 0.01) among females. CONCLUSION: The risk of poor prognosis regarding schizophrenic disorders, psychotic disorders, suicide, or self-inflicted injury and mortality after adult violence was higher than in those who have not experienced a violent injury. Adults at the highest risk for violent suicide or self-inflicted injuries due to exposure to violent injuries -males were at risk for schizophrenia and females were at risk for suicide or self-inflicted injuries. Therefore, it is necessary for social workers and medical personnel to pay attention to the psychological status of victims of violence.


Assuntos
Suicídio , Violência , Humanos , Adulto , Estudos de Coortes , Homicídio , Taiwan/epidemiologia
10.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080864

RESUMO

Detecting pesticides using techniques that involve simple fabrication methods and conducting the detection at very low levels are challenging. Herein, we report the detection of acetamiprid at the quadrillionth level using surface-enhanced Raman scattering (SERS). The SERS chip comprises Ag nanoparticles deposited on a tetrapod structure of ZnO coated onto indium tin oxide glass (denoted as Ag@ZnO-ITO). Controlled Ag decoration of ZnO occurs via irradiation-induced synthesis. The morphology of the surface plays a significant role in achieving an enhanced SERS performance for acetamiprid detection. 4,4'-Dipyridyl (DPY) is used to investigate synthesis conditions for the chip, leading to an optimal irradiation time of 60 min. Furthermore, the enhancement factor for acetamiprid on Ag@ZnO-ITO is higher than 107. These results demonstrate that SERS sensors have the potential for practical use in acetamiprid detection.


Assuntos
Nanopartículas Metálicas , Praguicidas , Óxido de Zinco , Nanopartículas Metálicas/química , Neonicotinoides , Praguicidas/análise , Prata/química , Análise Espectral Raman/métodos , Óxido de Zinco/química
11.
Analyst ; 146(12): 4066-4079, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34048512

RESUMO

Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced graphene oxide (AuNP/PEI/rGO)-modified disposable screen-printed electrode (SPE). A microwave-assisted single-step method was employed for the simultaneous reduction of gold and graphene oxide in a PEI environment to avoid AuNP agglomeration. The crystal structure, chemical composition, optical properties, and interior morphology of the materials were probed by X-ray diffraction, Raman spectroscopy, UV-visible spectrometry, and transmission electron microscopy techniques. To assemble a label-free MMP-1 immunosensor layer-by-layer, 3-mercaptopropionic acid was utilized due to its strong sulfur-gold bonding ability, and its tail end was attached to a carboxyl group, allowing the MMP-1 antibody (anti-MMP-1) to be subsequently cross-linked using the traditional N-(3-dimethylaminopropyl) and N' ethylcarbodiimide hydrochloride method. Differential pulse voltammetry analysis showed a linear relationship with MMP-1 concentration in the range of 1-50 ng ml-1 with an R2 value of ∼0.996 (n = 5, RSD < 5%). This immunosensor was successfully applied for MMP-1 detection in urine, saliva, bovine serum, and cell culture media (HSC-3 & C6) of oral and brain cancers showing results comparable to those of the credible ELISA method.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Neoplasias , Animais , Biomarcadores Tumorais , Bovinos , Técnicas Eletroquímicas , Eletrodos , Ouro , Imunoensaio , Limite de Detecção , Metaloproteinase 1 da Matriz , Polietilenoimina
12.
Nanotechnology ; 31(37): 375605, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32454465

RESUMO

In this paper, an effective approach is demonstrated for the fabrication of IrO2-decorated polystyrene@functionalized polypyrrole (core@shell; PS@PPyNH2) microspheres. The synthesis begins with the preparation of monodispersive PS microspheres with a diameter of 490 nm, by a process of emulsifier-free emulsion polymerization, followed by a copolymerization process involving pyrrole and PyNH2 monomers in a PS microsphere aqueous suspension, to produce uniform PS@PPyNH2 microspheres with a diameter of 536 nm. The loading of 2 nm IrO2 nanoparticles onto the PS@PPyNH2 microspheres can be easily adjusted by tuning the pH value of the IrO2 colloidal solution and the PS@PPyNH2 suspension. At pH 4, we successfully obtain IrO2-decorated PS@PPyNH2 microspheres via electrostatic attraction and hydrogen bonding simultaneously between the negatively-charged IrO2 nanoparticles and the positively-charged PS@PPyNH2 microspheres. These IrO2-decorated PS@PPyNH2 microspheres exhibit a characteristic cyclic voltammetric profile, similar to that of an IrO2 thin film. The charge storage capacity is 5.19 mA cm-2, a value almost five times greater than that of PS@PPyNH2 microspheres. In addition, these IrO2-decorated PS@PPyNH2 microspheres exhibit excellent cell viability and biocompatibility.

13.
Inorg Chem ; 57(21): 13071-13074, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351076

RESUMO

In this paper, we report a simple, rapid, and stable method for the continuous synthesis of highly stable Cs4PbBr6 perovskite microcrystals (MCs) using a microfluidic system. To demonstrate the potential application of Cs4PbBr6 MCs, the sample was fabricated with K2SiF6:Mn4+ phosphor onto InGaN blue chips as white-light-emitting diodes (LEDs). Our white-LED device achieved a high National Television Standards Committee value of 119% for backlight display, which indicated that the Cs4PbBr6 MC is a promising material for future applications.

14.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28139872

RESUMO

Cadmium-free thick-shelled InP/ZnSeS/ZnS quantum dot (QD) was synthesized using the heating-up approach. This quantum dots was used in inverted quantum dots light emitting diode (QLED) devices. The brightness of the inverted QLED device can reach a brightness of over 10 000 cd m-2 , low turn-on voltage (2.2 V), and high power efficiency (4.32 lm W-1 ).

15.
Nano Lett ; 13(8): 3658-63, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23902455

RESUMO

Hierarchical structures consisting of micropyramids and nanowires are used in Si/PEDOT:PSS hybrid solar cells to achieve a power conversion efficiency (PCE) up to 11.48% with excellent omnidirectionality. The structure provides a combined concepts of superior light trapping ability, significant increase of p-n junction areas, and short carrier diffusion distance, improving the photovoltaic characteristics including short-circuit current density, fill factor, and PCE. The enhancement of power generation is up to 253.8% at high incident angles, showing the outstanding omnidirectional operation ability of hybrid cells with hierarchical Si surfaces. This properly designed hierarchical-structured device paves a promising way for developing low-cost, high-efficiency, and omnidirectional solar applications in the future.

16.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337256

RESUMO

Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.

17.
J Mater Chem B ; 12(16): 3881-3907, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572601

RESUMO

Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.


Assuntos
Raios Infravermelhos , Nanopartículas , Neoplasias , Água , Humanos , Nanopartículas/química , Catálise , Água/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Processos Fotoquímicos
18.
Chemosphere ; 358: 142237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705406

RESUMO

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Assuntos
Carbono , Ciprofloxacina , Mel , Leite , Nanocompostos , Nanofibras , Óxidos , Nanocompostos/química , Ciprofloxacina/análise , Ciprofloxacina/química , Óxidos/química , Leite/química , Nanofibras/química , Animais , Mel/análise , Carbono/química , Molibdênio/química , Limite de Detecção , Compostos de Cálcio/química , Titânio/química , Teoria da Densidade Funcional , Técnicas Eletroquímicas/métodos , Cério/química , Contaminação de Alimentos/análise , Eletrodos , Magnésio/química , Magnésio/análise
19.
J Colloid Interface Sci ; 675: 792-805, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002230

RESUMO

Sodium-ion battery (SIB) is one of potential alternatives to lithium-ion battery, because of abundant resources and lower price of sodium. High electrical conductivity and long-term durability of MXene are advantageous as the anode material of SIB, but low energy density restricts applications. Tin phosphide possesses high theoretical capacity, low redox potential, and large energy density, but volume expansion reduces its cycling stability. In this study, tin phosphide particles are in-situ encapsulated into MXene conductive networks (SnxPy/MXene) by hydrothermal and phosphorization processes as novel anode materials of SIB. MXene amounts and hydrothermal durations are investigated to evenly distribute SnxPy in MXene. After 100 cycles, SnxPy/MXene reaches high specific capacities of 438.8 and 314.1 mAh/g at 0.2 and 1.0 A/g, respectively. The capacity retentions of 6.0% and 73.6% at 0.2 A/g are respectively obtained by SnxPy and SnxPy/MXene. The better specific capacity and cycling stability of SnxPy/MXene are attributed to less volume expansion of SnxPy during charge/discharge processes and relieved self-stacking of MXene by encapsulating SnxPy particles between MXene layers. Electrochemical impedance spectroscopy and Galvanostatic intermittent titration technique are also applied to analyze the charge storage mechanism in SIB. Higher sodium ion diffusion coefficient and smaller charge-transfer resistance are obtained by SnxPy/MXene.

20.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA