RESUMO
Solar heating of a cometary surface provides the energy necessary to sustain gaseous activity, through which dust is removed1,2. In this dynamical environment, both the coma3,4 and the nucleus5,6 evolve during the orbit, changing their physical and compositional properties. The environment around an active nucleus is populated by dust grains with complex and variegated shapes7, lifted and diffused by gases freed from the sublimation of surface ices8,9. The visible colour of dust particles is highly variable: carbonaceous organic material-rich grains10 appear red while magnesium silicate-rich11,12 and water-ice-rich13,14 grains appear blue, with some dependence on grain size distribution, viewing geometry, activity level and comet family type. We know that local colour changes are associated with grain size variations, such as in the bluer jets made of submicrometre grains on comet Hale-Bopp15 or in the fragmented grains in the coma16 of C/1999 S4 (LINEAR). Apart from grain size, composition also influences the coma's colour response, because transparent volatiles can introduce a substantial blueing in scattered light, as observed in the dust particles ejected after the collision of the Deep Impact probe with comet 9P/Tempel 117. Here we report observations of two opposite seasonal colour cycles in the coma and on the surface of comet 67P/Churyumov-Gerasimenko through its perihelion passage18. Spectral analysis indicates an enrichment of submicrometre grains made of organic material and amorphous carbon in the coma, causing reddening during the passage. At the same time, the progressive removal of dust from the nucleus causes the exposure of more pristine and bluish icy layers on the surface. Far from the Sun, we find that the abundance of water ice on the nucleus is reduced owing to redeposition of dust and dehydration of the surface layer while the coma becomes less red.
RESUMO
On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.
RESUMO
Ceres hosts notable aliphatic-organic concentrations, ranging from approximately 5 to >30 weight % in specific surface areas. The origins and persistence of these organics are under debate due to the intense aliphatic organic signature and radiation levels in Ceres' orbit, which would typically lead to their destruction, hindering detection. To investigate this, we conducted laboratory experiments to replicate how the signature of the organic-rich regions would degrade due to radiation. Our findings indicate a fast degradation rate, implying the exposure of buried organics within the past few million years. This degradation rate, coupled with observed quantities, implies that the aliphatics must be present in substantial quantities within the shallow subsurface. Our estimates suggest an initial aliphatic abundance 2 to 30 times greater than currently observed, surpassing significantly the levels found in carbonaceous chondrites, indicating either a significant concentration or remarkable purity.
RESUMO
The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. We performed a refined analysis merging visible and infrared observations of Ceres' surface for the first time. The overall shape of the combined spectrum suggests another type of silicate not previously considered, and we confirmed a large abundance of carbon material. More importantly, by analyzing the local spectra of the organic-rich region of the Ernutet crater, we identified a reddening in the visible range, strongly correlated to the aliphatic signature at 3.4 µm. Similar reddening was found in the bright material making up Cerealia Facula in the Occator crater. This implies that organic material might be present in the source of the faculae, where brines and organics are mixed in an environment that may be favorable for prebiotic chemistry.
RESUMO
The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.
RESUMO
Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.
RESUMO
The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time.