Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 18(9): 908-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26940382

RESUMO

Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments.


Assuntos
Bidens/metabolismo , Lactuca/metabolismo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Tagetes/metabolismo , Agricultura/métodos , Argentina
2.
J Hazard Mater ; 311: 63-9, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26954477

RESUMO

The principal impediment for Pb uptake by plants is the Casparian strip in roots. It prevents metals reaching the xylem, thereby hampering translocation to the aerial organs. In the root apices, young root cells have thin cell walls and the Casparian strip is not completely developed, which could facilitate Pb uptake by roots at these vulnerable points. However, as the phytotoxic effects of Pb reduce root growth and enhance suberization, entry of Pb into the plant is avoided. We propose that the application of root growth promotors could be an important complement in the phytoextraction of Pb from polluted soils, due to their effects on produced biomass, Pb toxicity, and root exudate production. A greenhouse experiment was carried on to evaluate the auxin application effect on the Pb uptake of Bidens pilosa and Tagetes minuta. These species were sensitive to auxins, but the phytotoxic effect of Pb was not reversed by this treatment. Root exudates capable of extracting Pb were produced only when the species were grown in highly polluted soils, indicating a behavioral response to Pb exposure which is desirable for phytoremediation.


Assuntos
Bidens/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Chumbo/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Tagetes/efeitos dos fármacos , Bidens/metabolismo , Biodegradação Ambiental , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Tagetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA