Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6184-6191, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38546051

RESUMO

Secondary coordination sphere ligand effects can be used to direct or organize small molecule substrates at a metal center. Herein, we assess the bifunctional ambiphilic diphosphine, tri-tert-butylboranyldiphosphinoethane (ttbbpe) and its ability to influence stereoselective substrate coordination, while appended to nickel. This report takes a synthetic/computational approach to test the impacts and limitations associated with ligand-directed substrate coordination using [Ni(ttbbpe)(η2:η2-COD)] (COD = 1,5-cyclooctadiene) and ynones (alkynes having an α-carbonyl group at the propargylic position) as model substrates.

2.
Chemistry ; 29(17): e202203763, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36534339

RESUMO

Metal-ligand cooperation has emerged as a versatile tool for substrate activation in chemical reactivity. Herein, we provide the synthesis and characterization of a monoboranyl-containing analogue of the ubiquitous bulky diphosphine ligand, 1,2-bis(di-tert-butylphosphino)ethane, whose reactivity has been examined using nickel. Together, the pairing of nickel and boron provides a platform that allows for the cooperative coordination of organonitriles, giving unusual examples of intermolecularly bound dinickelacycles.

3.
Inorg Chem ; 57(1): 495-506, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260872

RESUMO

Three PCsp3P pincer ligands differing in the aryl group linking the phosphine arms with the anchoring carbon donor were used to support square planar Ni(II) bromide complexes 1-3Br. Exchange of the coordinating bromide anion for the more weakly coordinating triflate (OTf) or hexafluoroantimonate (SbF6) anions was accomplished by treatment with AgX or TlX salts to give compounds 1-3X; compounds 1OTf, 1SbF6, 2Br, 2OTf, 3Br, and 3SbF6 were all characterized by X-ray crystallography. The reactions of these Ni(II) compounds with the amine-N-oxide oxygen atom transfer agents ONMe3 and ONMePh2 were explored. For ONMe3, reactions with 2 equiv gave products in which one arm of the pincer ligand was oxidized to a P═O unit, with the other amine-N-oxide ligated to the Ni(II) center, forming products 5-6X; compounds 4OTf, 5OTf, and 6SbF6 were characterized crystallographically. Transient amine-N-oxide adducts prior to ligand oxidation were observed in some reactions. For the more effective O atom donor ONMePh2, reactions were very rapid and a second oxidation of the remaining phosphine arm was observed, producing a Ni(II) species with an OCO pincer ligand (7SbF6). All compounds were fully characterized. Experiments aimed at trapping transient Ni(IV) oxo intermediates (with cyclohexadiene, KH, and various Lewis acids) indicated that such species were not involved in the reaction. This was supported by density functional theory (DFT) computations at the B3PW91 level, which indicated that direct O atom insertion into the Ni-P bonds without the intermediacy of a Ni oxo species was the low-energy pathway.

4.
ACS Org Inorg Au ; 3(4): 217-222, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37545661

RESUMO

Monodentate phosphine-ligated nickel compounds, e.g., [Ni(PPh3)4] are relevant as active catalysts across a broad range of reactions. This report expands upon the coordination chemistry of this family, offering the reactivity of allyl- and vinyl-substituted diphenylphosphine (PPh2R) with [Ni(COD)2] (COD = 1,5-cyclooctadiene). These reactions provide three-coordinate dinickelacycles that are intermolecularly tethered through adjacent {Ni}-olefin interactions. The ring conformation of such cycles has been studied in the solid-state and using theoretical calculations. Here, a difference in reaction outcome is linked to the presence of an allyl vs vinyl group, where the former is observed to undergo rearrangement, bringing about challenges in clean product isolation.

5.
RSC Adv ; 13(28): 19158-19163, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362339

RESUMO

The catalytic conversion of unsaturated small molecules such as nitriles into reduced products is of interest for the production of fine chemicals. In this vein, metal-ligand cooperativity has been leveraged to promote such reactivity, often conferring stability to bound substrate - a balancing act that may offer activation at the cost of turnover efficiency. This report describes the reactivity of a [(diphosphine)Ni] compound with pnictogen carbon triple bonds (R-C[triple bond, length as m-dash]E; E = N, P), where the diphosphine contains two pendant borane groups. For E = N, cooperative nitrile coordination is observed to afford {Ni}2 complexes displaying B-N interactions, whereas for E = P, B-P interactions are absent. This work additionally outlines a structure-activity relationship that uses nitrile dihydroboration as a model reaction to unveil the effect of SCS stabilization, employing [(diphosphine)Ni] where the diphosphine contains 0, 1, or 2 pendant Lewis acid groups.

6.
ACS Med Chem Lett ; 7(12): 1097-1101, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994745

RESUMO

Benzoxaboroles are a class of five-membered hemiboronic acids that recently attracted significant attention as a new pharmacophore on account of their unique structural and physicochemical properties and their ability to interact selectively with biomolecules. Their structural behavior in water and its effect on their physiological properties remain unclear, especially the question of dynamic hydrolytic equilibrium of the oxaborole ring. Herein, we used NMR spectroscopy, in mixed aqueous-organic solvent, to confirm the strong preference for the closed form of benzoxaborole and its six- and seven-membered homologues over the open boronic acid form. Only with the eight-membered homologue does the cyclic form become unfavorable. Using dynamic VT-NMR studies with designed probe compound 20, we demonstrate that the oxaborole ring undergoes rapid hydrolytic ring closing-opening at ambient temperature at a rate of >100 Hz via a mechanism featuring rate-limiting proton-transfer steps. This knowledge can help provide a better understanding of the behavior of benzoxaboroles in biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA