Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 259-269, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573522

RESUMO

The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions.


Assuntos
Imagem Individual de Molécula , Software , Microscopia Crioeletrônica , Coleta de Dados , Manejo de Espécimes
2.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 174-180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376453

RESUMO

Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos , Fluxo de Trabalho , Computação em Nuvem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA