Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793899

RESUMO

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Assuntos
Processamento Alternativo/fisiologia , Catharanthus/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Vinca/metabolismo
2.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208368

RESUMO

Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic pathway, namely tabersonine 16-hydroxylase and tabersonine-16-O-methyltransferase. Increasing gene copies resulted in an optimized methoxylation of tabersonine and overcame the competition for tabersonine access with the third enzyme of the pathway, tabersonine 3-oxygenase, which exhibits a high substrate promiscuity. Through this approach, we successfully created a yeast strain that produces the fourth biosynthetic intermediate of vindoline without accumulation of other intermediates or undesired side-products. This optimization will probably pave the way towards the future development of yeast cell factories to produce vindoline at an industrial scale.


Assuntos
Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Quinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vimblastina/análogos & derivados , Vias Biossintéticas , Vimblastina/biossíntese , Vimblastina/química
3.
Plant J ; 94(3): 469-484, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438577

RESUMO

While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.


Assuntos
Acetiltransferases/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Quinolinas/metabolismo , Acetilação , Acetiltransferases/genética , Catharanthus/enzimologia , Catharanthus/genética , Redes e Vias Metabólicas , Microrganismos Geneticamente Modificados , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia
4.
Plant Physiol ; 177(4): 1473-1486, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934299

RESUMO

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.


Assuntos
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina , Leveduras/genética , Leveduras/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(11): 3205-10, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25675512

RESUMO

The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host.


Assuntos
Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides de Vinca/biossíntese , Álcool Desidrogenase/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Engenharia Genética , Espectrometria de Massas , Saccharomyces cerevisiae/enzimologia , Alcaloides de Vinca/química
7.
Planta ; 246(1): 45-60, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28349256

RESUMO

MAIN CONCLUSION: The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Inativação Gênica/fisiologia , Malus/crescimento & desenvolvimento , Malus/metabolismo , Fitosteróis/biossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Secoviridae/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/genética , Folhas de Planta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Triterpenos/metabolismo
8.
Plant Physiol ; 172(3): 1563-1577, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688619

RESUMO

Expansion of the biosynthesis of plant specialized metabolites notably results from the massive recruitment of cytochrome P450s that catalyze multiple types of conversion of biosynthetic intermediates. For catalysis, P450s require a two-electron transfer catalyzed by shared cytochrome P450 oxidoreductases (CPRs), making these auxiliary proteins an essential component of specialized metabolism. CPR isoforms usually group into two distinct classes with different proposed roles, namely involvement in primary and basal specialized metabolisms for class I and inducible specialized metabolism for class II. By studying the role of CPRs in the biosynthesis of monoterpene indole alkaloids, we provide compelling evidence of an operational specialization of CPR isoforms in Catharanthus roseus (Madagascar periwinkle). Global analyses of gene expression correlation combined with transcript localization in specific leaf tissues and gene-silencing experiments of both classes of CPR all point to the strict requirement of class II CPRs for monoterpene indole alkaloid biosynthesis with a minimal or null role of class I. Direct assays of interaction and reduction of P450s in vitro, however, showed that both classes of CPR performed equally well. Such high specialization of class II CPRs in planta highlights the evolutionary strategy that ensures an efficient reduction of P450s in specialized metabolism.


Assuntos
Alcaloides/biossíntese , Vias Biossintéticas , Catharanthus/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Biocatálise , Vias Biossintéticas/genética , Catharanthus/genética , Cotilédone/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Alcaloides Indólicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Folhas de Planta/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
9.
Mol Microbiol ; 95(6): 914-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25560420

RESUMO

Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs.


Assuntos
Fungos/enzimologia , Fungos/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sequência Conservada , Fungos/patogenicidade , Genes Fúngicos , Histidina Quinase , Fosforilação , Filogenia , Proteínas Quinases/química , Proteínas Quinases/classificação
10.
FEMS Yeast Res ; 16(6)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27620459

RESUMO

The fungal CTG clade comprises a number of well-known yeasts that impact human health or with high biotechnological potential. To further extend the set of molecular tools dedicated to these microorganisms, the initial focus of this study was to develop a mycophenolic acid (MPA) resistance cassette. Surprisingly, while we were carrying out preliminary susceptibility testing experiments in a set of yeast species, Meyerozyma guilliermondii, although not being a MPA producer, was found to be primarily resistant toward this drug, whereas a series of nine related species were susceptible to MPA. Using comparative and functional genomic approaches, we demonstrated that all MPA-susceptible CTG clade species display a single gene, referred to as IMH3.1, encoding the MPA target inosine monophosphate dehydrogenase (IMPDH) and that MPA resistance relies on the presence in the M. guilliermondii genome of an additional IMPDH-encoding gene (IMH3.2). The M. guilliermondii IMH3.2 gene displays marked differences compared to IMH3.1 including the lack of intron, a roughly 160-fold higher transcription level and a serine residue at position 251. Placed under the control of the M. guilliermondii actin 1 gene promoter, IMH3.2 was successfully used to transform Lodderomyces elongisporus, Clavispora lusitaniae, Scheffersomyces stipitis and Candida parapsilosis.

11.
BMC Genomics ; 16: 619, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26285573

RESUMO

BACKGROUND: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. RESULTS: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements. CONCLUSIONS: The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy.


Assuntos
Catharanthus/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica/métodos , Glucosídeos Iridoides/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Processamento Alternativo , Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/análise , RNA de Plantas/análise
12.
Mar Drugs ; 13(1): 655-65, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25607930

RESUMO

This work describes the synthesis and biological evaluation of a new heterocyclic hybrid derived from the ellipticine and the marine alkaloid makaluvamine A. Pyridoquinoxalinedione 12 was obtained in seven steps with 6.5% overall yield. 12 and its intermediates 1-11 were evaluated for their in vitro cytotoxic activity against different cancer cell lines and tested for their inhibitory activity against the human DNA topoisomerase II. The analysis by electrophoresis shows that the pentacycle 12 inhibits the topoisomerase II like doxorubicine at 100 µM. Compound 9 was found to have an interesting profile, having a cytotoxicity of 15, 15, 15 and 10 µM against Caco-2, HCT-116, Pc-3 and NCI cell lines respectively, without any noticeable toxicity against human fibroblast.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Células CACO-2/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Desenho de Fármacos , Células HCT116/efeitos dos fármacos , Humanos , Estrutura Molecular , Pirróis/química , Quinolonas/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
13.
Fungal Genet Biol ; 65: 25-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24518307

RESUMO

Fungal histidine kinase receptors (HKR) sense and transduce many intra- and extracellular signals that regulate a wide range of physiological processes. Candida CTG clade species commonly possess three types of HKR namely Sln1p (type VI), Nik1p (type III) and Chk1p (type X). Although some recent work has demonstrated the potential involvement of HKR in osmoregulation, morphogenesis, sexual development, adaptation to osmotic stresses and drug resistance in distinct Candida species, little data is available in relation to their subcellular distribution within yeast cells. We describe in this work the comparative subcellular localization of class III, VI, and X HKRs in Candida guilliermondii, a yeast CTG clade species of clinical and biotechnological interest. Using a fluorescent protein fusion approach, we showed that C. guilliermondii Sln1p fused to the yellow fluorescent protein (Sln1p-YFP) appeared to be anchored in the plasma membrane. By contrast, both Chk1p-YFP and YFP-Chk1p were localized in the nucleocytosol of C. guilliermondii transformed cells. Furthermore, while Nik1p-YFP fusion protein always displayed a nucleocytosolic localization, we noted that most of the cells expressing YFP-Nik1p fusion protein displayed an aggregated pattern of fluorescence in the cytosol but not in the nucleus. Interestingly, Sln1p-YFP and Nik1p-YFP fusion protein localization changed in response to hyperosmotic stress by rapidly clustering into punctuated structures that could be associated to osmotic stress signaling. To date, this work provides the first insight into the subcellular localization of the three classes of HKR encoded by CTG clade yeast genomes and constitutes original new data concerning this family of receptors. This represents also an essential prerequisite to open a window into the understanding of the global architecture of HKR-mediated signaling pathways in CTG clade species.


Assuntos
Candida/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Histidina Quinase , Pressão Osmótica , Fosforilação , Transdução de Sinais
14.
Yeast ; 31(7): 243-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700391

RESUMO

Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the fungal CTG clade. This yeast remains actively studied as a result of its moderate clinical importance and most of all for its potential uses in biotechnology. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both a methionine auxotroph recipient strain and a functional MET gene as selection marker. We first disrupted the MET2 and MET15 genes encoding homoserine-O-acetyltransferase and O-acetylserine O-acetylhomoserine sulphydrylase, respectively. The met2 mutant was shown to be a methionine auxotroph in contrast to met15 which was not. Interestingly, met2 and met15 mutants formed brown colonies when cultured on lead-containing medium, contrary to the wild-type strain, which develop as white colonies on this medium. The MET2 wild-type allele was successfully used to transfer a yellow fluorescent protein (YFP) gene-expressing vector into the met2 recipient strain. In addition, we showed that the loss of the MET2-containing YFP-expressing plasmid can be easily observed on lead-containing medium. The MET2 wild-type allele, flanked by two short repeated sequences, was then used to disrupt the LYS2 gene (encoding the α-aminoadipate reductase) in the C. guilliermondii met2 recipient strain. The resulting lys2 mutants displayed, as expected, auxotrophy for lysine. Unfortunately, all our attempts to pop-out the MET2 marker (following the recombination of the bordering repeat sequences) from a target lys2 locus were unsuccessful using white/brown colony colour screening. Nevertheless, this MET2 transformation/disruption system represents a new versatile genetic tool for C. guilliermondii.


Assuntos
Candida/metabolismo , Metionina/biossíntese , Acetiltransferases/genética , Acetiltransferases/metabolismo , Vias Biossintéticas/genética , Candida/enzimologia , Candida/genética , Clonagem Molecular , Cisteína Sintase/genética , Cisteína Sintase/metabolismo , Marcadores Genéticos/genética , Marcadores Genéticos/fisiologia , Proteínas Luminescentes/genética , Metionina/genética , Microscopia de Fluorescência , Mutagênese Insercional , Transformação Genética
15.
Plant Physiol ; 163(4): 1792-803, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24108213

RESUMO

Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.


Assuntos
Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Vimblastina/análogos & derivados , Biocatálise , Vias Biossintéticas/genética , Catharanthus/citologia , Catharanthus/genética , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Retículo Endoplasmático/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Hidroxilação , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Cinética , Metaboloma/genética , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Quinolinas/química , Quinolinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Vimblastina/biossíntese , Vimblastina/química
16.
J Nat Prod ; 77(7): 1658-62, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25014026

RESUMO

trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3-5) of 1a purified from Vitis vinifera grape canes and several analogues (1b-1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-ε-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3-5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29-37 µg/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 µg/mL.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Estilbenos/farmacologia , Vitis/química , Antifúngicos/química , Benzofuranos/química , Benzofuranos/farmacologia , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Resveratrol , Estereoisomerismo , Estilbenos/química
17.
Curr Genet ; 59(3): 73-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23616192

RESUMO

Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the Saccharomycotina CTG clade which has been studied over the last 40 years due to its biotechnological interest, biological control potential and clinical importance. Such a wide range of applications in various areas of fundamental and applied scientific research has progressively made C. guilliermondii an attractive model for exploring the potential of yeast metabolic engineering as well as for elucidating new molecular events supporting pathogenicity and antifungal resistance. All these research fields now take advantage of the establishment of a useful molecular toolbox specifically dedicated to C. guilliermondii genetics including the construction of recipient strains, the development of selectable markers and reporter genes and optimization of transformation protocols. This area of study is further supported by the availability of the complete genome sequence of the reference strain ATCC 6260 and the creation of numerous databases dedicated to gene ontology annotation (metabolic pathways, virulence, and morphogenesis). These genetic tools and genomic resources represent essential prerequisites for further successful development of C. guilliermondii research in medical mycology and in biological control by facilitating the identification of the multiple factors that contribute to its pathogenic potential. These genetic and genomic advances should also expedite future practical uses of C. guilliermondii strains of biotechnological interest by opening a window into a better understanding of the biosynthetic pathways of valuable metabolites.


Assuntos
Vias Biossintéticas/genética , Candida/genética , Genoma Fúngico , Sequência de Bases , Candida/crescimento & desenvolvimento , Candida/metabolismo , Morfogênese/genética , Análise de Sequência de DNA , Virulência
18.
FEMS Yeast Res ; 13(3): 354-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23374647

RESUMO

We designed an efficient transformation system for Candida guilliermondii wild-type strains. We demonstrated that the Staphylococcus aureus MRSA 252 ble coding sequence placed under the control of the yeast phosphoglycerate kinase gene transcription-regulating regions confers phleomycin resistance to transformed C. guilliermondii cells. To illustrate the potential of this drug-resistant cassette, we carried out the disruption of the C. guilliermondii ADE2 gene. This new dominant selectable marker represents a powerful tool to study the function of various genes in this yeast of clinical and biotechnological interest.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/biossíntese , Candida/genética , Resistência Microbiana a Medicamentos , Técnicas de Transferência de Genes , Fleomicinas/metabolismo , Transformação Genética , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , Expressão Gênica , Vetores Genéticos , Staphylococcus aureus Resistente à Meticilina/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Seleção Genética , Análise de Sequência de DNA
19.
Biotechnol Lett ; 35(7): 1035-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23463324

RESUMO

The yeast, Candida guilliermondii, has been widely studied due to its biotechnological interest as well as its biological control potential. It integrates foreign DNA predominantly via ectopic events, likely through the well-known non-homologous end-joining (NHEJ) pathway involving the Ku70p/Ku80p heterodimer, Lig4p, Nej1p and Lif1p. This phenomenon remains highly deleterious for targeted gene knock-out strategies that require the homologous recombination process. Here, we have constructed a ku70 mutant strain derived from the ATCC 6260 reference strain of C. guilliermondii. Following a series of disruption attempts of various genes (FCY1, ADE2 and TRP5), using several previously described dominant selectable markers (URA5, SAT-1 and HPH#), we demonstrated that the efficiencies of homologous gene targeting in such a NHEJ-deficient strain was very high compared to the wild type strain. The C. guilliermondii ku70 deficient mutant thus represents a powerful recipient strain to knock-out genes efficiently in this yeast.


Assuntos
Candida/genética , Marcação de Genes/métodos , Genética Microbiana/métodos , Recombinação Genética , Antígenos Nucleares/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Autoantígeno Ku
20.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35947213

RESUMO

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA