Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(7): 1450-1453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916637

RESUMO

We analyzed body lice collected from persons experiencing homelessness in Winnipeg, Manitoba, Canada, during 2020-2021 to confirm vector species and ecotype and to identify louseborne pathogens. Of 556 lice analyzed from 7 persons, 17 louse pools (218 lice) from 1 person were positive for the louseborne bacterium Bartonella quintana.


Assuntos
Pessoas Mal Alojadas , Infestações por Piolhos , Pediculus , Humanos , Animais , Pediculus/microbiologia , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Bartonella quintana/genética , Canadá/epidemiologia , Manitoba/epidemiologia , Masculino , Feminino
2.
Mol Ecol ; 31(9): 2545-2561, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229389

RESUMO

Virome studies among metazoans have revealed the ubiquity of RNA viruses in animals, contributing to a fundamental rethinking of the relationships between organisms and their microbiota. Mosquito viromes, often scrutinized due to their public health relevance, may also provide insight into broadly applicable concepts, such as a "core virome," a set of viruses consistently associated with a host species or population that may fundamentally impact its basic biology. A subset of mosquito-associated viruses (MAVs) could comprise such a core, and MAVs can be categorized as (i) arboviruses, which alternate between mosquito and vertebrate hosts, (ii) insect-specific viruses, which cannot replicate in vertebrate cells, and (iii) viruses with unknown specificity. MAVs have been widely characterized in the disease vector Aedes aegypti, and the occurrence of a core virome in this species has been proposed but remains unclear. Using a wild population previously surveyed for MAVs and a common laboratory strain, we investigated viromes in reproductive tissue via metagenomic RNA sequencing. Virome composition varied across samples, but four groups comprised >97% of virus sequences: a novel partiti-like virus (Partitiviridae), a toti-like virus (Totiviridae), unclassified Riboviria, and four orthomyxo-like viruses (Orthormyxoviridae). Whole or partial genomes for the partiti-like virus, toti-like virus, and one orthomyxo-like virus were assembled and analysed phylogenetically. Multigenerational maintenance of these MAVs was confirmed by RT-PCR, indicating vertical transmission as a mechanism for persistence. This study provides fundamental information regarding MAV ecology and variability in A. aegypti and the potential for vertically maintained core viromes at the population level.


Assuntos
Aedes , Vírus de Insetos , Vírus de RNA , Vírus , Aedes/genética , Animais , Vírus de Insetos/genética , Mosquitos Vetores/genética , Filogenia , Viroma/genética
3.
Mem Inst Oswaldo Cruz ; 116: e200547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076041

RESUMO

BACKGROUND: Forty percent of the world's population live in areas where they are at risk from dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Dengue viruses are transmitted primarily by the mosquito Aedes aegypti. In Cali, Colombia, approximately 30% of field collected Ae. aegypti are naturally refractory to all four dengue serotypes. OBJECTIVES: Use RNA-sequencing to identify those genes that determine refractoriness in feral mosquitoes to dengue. This information can be used in gene editing strategies to reduce dengue transmission. METHODS: We employed a full factorial design, analyzing differential gene expression across time (24, 36 and 48 h post bloodmeal), feeding treatment (blood or blood + dengue-2) and strain (susceptible or refractory). Sequences were aligned to the reference Ae. aegypti genome for identification, assembled to visualize transcript structure, and analyzed for dynamic gene expression changes. A variety of clustering techniques was used to identify the differentially expressed genes. FINDINGS: We identified a subset of genes that likely assist dengue entry and replication in susceptible mosquitoes and contribute to vector competence. MAIN CONCLUSIONS: The differential expression of specific genes by refractory and susceptible mosquitoes could determine the phenotype, and may be used to in gene editing strategies to reduce dengue transmission.


Assuntos
Aedes , Vírus da Dengue , Dengue , Aedes/genética , Animais , Colômbia , Vírus da Dengue/genética , Mosquitos Vetores/genética , RNA , Transcriptoma/genética
4.
J Insect Sci ; 18(6)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508201

RESUMO

The composition, abundance, and diversity of midgut bacteria in mosquitoes can influence pathogen transmission. We used 16S rRNA microbiome profiling to survey midgut microbial diversity in pooled samples of laboratory colonized dengue-refractory, Cali-MIB, and dengue-susceptible, Cali-S Aedes aegypti (Linnaeus). The 16S rRNA sequences from the sugar-fed midguts of adult females clustered to 63 amplicon sequence variants (ASVs), primarily from Proteobacteria, Firmicutes, Flavobacteria, and Actinobacteria. An average of five ASVs dominated the midguts, and most ASVs were present in both Cali-MIB and Cali-S midguts. No differences in abundance were noted at any phylogenetic level (Phylum, Class, Order, Family, Genus) by analysis of composition of microbiome (w = 0). No community diversity metrics were significantly different between refractory and susceptible mosquitoes. These data suggest that phenotypic differences in the susceptibility to dengue virus between Cali-MIB and Cali-S are not likely due to major differences in midgut bacterial communities.


Assuntos
Aedes/microbiologia , Bactérias/classificação , Bactérias/virologia , Biodiversidade , Animais , Trato Gastrointestinal/microbiologia , Filogenia
5.
Microbiol Spectr ; 12(6): e0359323, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38682930

RESUMO

Lyme arthritis can present similarly to other causes of joint pain and swelling including septic arthritis and other acute and chronic arthropathies of childhood. Septic arthritis, although rare, constitutes an orthopedic emergency and requires early surgical intervention to reduce the risk of permanent joint damage. Currently, results of standard serologic tests to diagnose Lyme disease take days to weeks, which is unhelpful in acute clinical decision-making. Thus, some children with Lyme arthritis are treated empirically for septic arthritis undergoing unnecessary invasive procedures and hospital admission while on inappropriate antibiotic therapy. We retrospectively validated the Quidel Sofia Lyme Fluorescent Immunoassay, a rapid serologic assay that can detect IgG and/or IgM antibodies to Borrelia burgdorferi in 10 minutes, in residual serum samples collected from 51 children who had Lyme arthritis and 55 children with musculoskeletal presentations who were Lyme negative. The sensitivity and specificity of the Sofia IgG to identify cases of Lyme arthritis in children were 100% (95% confidence interval [CI] of 93.0%-100%) and 96.4% (95% CI: 87.5%-99.6%), respectively. The positive likelihood ratio (LR) was 27.5 (95% CI 7-107), and the negative LR was 0.00 (95% LR 0.00-0.15). We propose that the Sofia IgG, a rapid method for identifying Lyme arthritis, may be useful in differentiating Lyme arthritis from other forms of arthritis. Used in conjunction with readily available clinical and laboratory variables, it could help to rapidly identify children who are at low risk of septic arthritis in Lyme-endemic regions. IMPORTANCE: Lyme arthritis is a common manifestation of Lyme disease in children, with clinical features overlapping with other causes of acute and chronic joint pain/swelling in children. We have demonstrated that the Sofia IgG is a reliable test to rule in and rule out the diagnosis of Lyme arthritis in children with musculoskeletal presentations in a Lyme-endemic region. When used in conjunction with clinical and laboratory variables routinely considered when differentiating Lyme arthritis from other diagnoses, the Sofia IgG has the potential to fill an important gap in care, especially when acute decision-making is necessary. The Sofia IgG should be included in prospective research studies examining clinical prediction tools to identify children at low risk of septic arthritis.


Assuntos
Anticorpos Antibacterianos , Artrite Infecciosa , Borrelia burgdorferi , Imunoglobulina G , Doença de Lyme , Sensibilidade e Especificidade , Humanos , Doença de Lyme/diagnóstico , Doença de Lyme/sangue , Criança , Estudos Retrospectivos , Masculino , Feminino , Anticorpos Antibacterianos/sangue , Adolescente , Borrelia burgdorferi/imunologia , Pré-Escolar , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/microbiologia , Diagnóstico Diferencial , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes Sorológicos/métodos
6.
PLoS One ; 18(10): e0292741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815990

RESUMO

The outer surface protein C (OspC) of the agent of Lyme disease, Borrelia burgdorferi sensu stricto, is a major lipoprotein surface-expressed during early-phase human infections. Antibodies to OspC are used in serological diagnoses. This study explored the hypothesis that serological test sensitivity decreases as genetic similarity of ospC major groups (MGs) of infecting strains, and ospC A (the MG in the strain B31 used to prepare antigen for serodiagnosis assays) decreases. We used a previously published microarray dataset to compare serological reactivity to ospC A (measured as pixel intensity) versus reactivity to 22 other ospC MGs, within a population of 55 patients diagnosed by two-tier serological testing using B. burgdorferi s.s. strain B31 as antigen, in which the ospC MG is OspC A. The difference in reactivity of sera to ospC A and reactivity to each of the other 22 ospC MGs (termed 'reactivity difference') was the outcome variable in regression analysis in which genetic distance of the ospC MGs from ospC A was the explanatory variable. Genetic distance was computed for the whole ospC sequence, and 9 subsections, from Neighbour Joining phylogenetic trees of the 23 ospC MGs. Regression analysis was conducted using genetic distance for the full ospC sequence, and the subsections individually. There was a significant association between the reactivity difference and genetic distance of ospC MGs from ospC A: increased genetic distance reduced reactivity to OspC A. No single ospC subsection sequence fully explained the relationship between genetic distance and reactivity difference. An analysis of single nucleotide polymorphisms supported a biological explanation via specific amino acid modifications likely to change protein binding affinity. This adds support to the hypothesis that genetic diversity of B. burgdorferi s.s. (here specifically OspC) may impact serological diagnostic test performance. Further prospective studies are necessary to explore the clinical implications of these findings.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Filogenia , Estudos Prospectivos , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Doença de Lyme/diagnóstico , Proteínas da Membrana Bacteriana Externa , Mutação
7.
Commun Biol ; 6(1): 171, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782045

RESUMO

An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Feminino , Plasmodium falciparum/genética , Anopheles/metabolismo , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Malária Falciparum/parasitologia
8.
Front Microbiol ; 14: 1251065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901834

RESUMO

Introduction: SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods: We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results: Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion: We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.

9.
Can Commun Dis Rep ; 49(6): 288-298, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38444700

RESUMO

Background: Ixodes scapularis and Ixodes pacificus ticks are the principal vectors of the agent of Lyme disease and several other tick-borne diseases in Canada. Tick surveillance data can be used to identify local tick-borne disease risk areas and direct public health interventions. The objective of this article is to describe the seasonal and spatial characteristics of the main Lyme disease vectors in Canada, and the tick-borne pathogens they carry, using passive and active surveillance data from 2020. Methods: Passive and active surveillance data were compiled from the National Microbiology Laboratory Branch (Public Health Agency of Canada), provincial and local public health authorities, and eTick (an online, image-based platform). Seasonal and spatial analyses of ticks and their associated pathogens are presented, including infection prevalence estimates. Results: In passive surveillance, I. scapularis (n=7,534) were submitted from all provinces except Manitoba and British Columbia, while I. pacificus (n=718) were submitted only from British Columbia. No ticks were submitted from the Territories. The seasonal distribution of I. scapularis submissions was bimodal, but unimodal for I. pacificus. Four tick-borne pathogens were identified in I. scapularis (Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti and Borrelia miyamotoi) and one in I. pacificus (B. miyamotoi). In active surveillance, I. scapularis (n=688) were collected in Ontario, Québec and New Brunswick. Five tick-borne pathogens were identified: B. burgdorferi, A. phagocytophilum, B. microti, B. miyamotoi and Powassan virus. Conclusion: This article provides a snapshot of the distribution of I. scapularis and I. pacificus and their associated human pathogens in Canada in 2020, which can help assess the risk of exposure to tick-borne pathogens in different provinces.

10.
Emerg Microbes Infect ; 12(2): 2281352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933502

RESUMO

Dengue fever is expanding as a global public health threat including countries within Africa. For the past few decades, Cameroon has experienced sporadic cases of arboviral infections including dengue fever. Here, we conducted genomic analyses to investigate the origin and phylogenetic profile of Cameroon DENV-1 outbreak strains and predict the impact of emerging therapeutics on these strains. Bayesian and maximum-likelihood phylogenetic inference approaches were employed in virus evolutionary analyses. An in silico analysis was performed to assess the divergence in immunotherapeutic and vaccine targets in the new genomes. Six complete DENV-1 genomes were generated from 50 samples that met a clinical definition for DENV infection. Phylogenetic analyses revealed that the strains from the current study belong to a sub-lineage of DENV-1 genotype V and form a monophyletic taxon with a 2012 strain from Gabon. The most recent common ancestor (TMRCA) of the Cameroon and Gabon strains was estimated to have existed around 2008. Comparing our sequences to the vaccine strains, 19 and 15 amino acid (aa) substitutions were observed in the immuno-protective prM-E protein segments of the Dengvaxia® and TetraVax-DV-TV003 vaccines, respectively. Epitope mapping revealed mismatches in aa residues at positions E155 and E161 located in the epitope of the human anti-DENV-1 monoclonal antibody HMAb 1F4. The new DENV strains constitute a conserved genomic pool of viruses endemic to the Central African region that needs prospective monitoring to track local viral evolution. Further work is needed to ascertain the performance of emerging therapeutics in DENV strains from the African region.


Assuntos
Vírus da Dengue , Dengue , Vacinas , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Camarões/epidemiologia , Teorema de Bayes , Estudos Prospectivos , Sequenciamento Completo do Genoma , Genótipo , Surtos de Doenças
11.
Lancet Reg Health Am ; 11: 100231, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36778921

RESUMO

Background: Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. We hypothesized that we would find a number of DENV-1 positive mosquito pools, and that the distribution of these arbovirus-positive mosquito pools would be associated with those neighborhoods for which imported DENV cases have been recently reported in 2019 and 2020. Methods: We collected and screened Aedes aegypti, Ae. albopictus, Anopheles crucians, Culex coronator, Cx. nigripalpus, and Cx. quinquefasciatus mosquitoes from Miami-Dade County (Florida) for DENV and WNV by rRT-qPCR. Spatial statistical analyses were performed to capture positive mosquito pool distribution in relation to land use, human demography, environmental variables, mosquito trap placement and reported human travel associated DENV cases to guide future mosquito control outbreak responses. Findings: A rapid screen of 7,668 mosquitoes detected four DENV serotype 2 (DENV-2), nine DENV-4 and nine WNV-positive mosquito pools, which enabled swift and targeted abatement of trap sites by mosquito control. As expected, DENV-positive pools were in urban areas; however, we found WNV-positive mosquito pools in agricultural and recreational areas with no historical reports of WNV transmission. Interpretation: These findings demonstrate the importance of proactive arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms, are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in mosquitoes in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought. Funding: This research was supported in part by U.S. Centers for Disease Control and Prevention (CDC) grant 1U01CK000510-03, Southeastern Regional Center of Excellence in Vector Borne Diseases Gateway Program.

12.
Commun Biol ; 4(1): 69, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452408

RESUMO

Inter-host transmission of pathogenic arboviruses such as dengue virus (DENV) and Zika virus (ZIKV) requires systemic infection of the mosquito vector. Successful systemic infection requires initial viral entry and proliferation in the midgut cells of the mosquito followed by dissemination to secondary tissues and eventual entry into salivary glands1. Lack of arbovirus proliferation in midgut cells has been observed in several Aedes aegypti strains2, but the midgut antiviral responses underlying this phenomenon are not yet fully understood. We report here that there is a rapid induction of apoptosis (RIA) in the Aedes aegypti midgut epithelium within 2 hours of infection with DENV-2 or ZIKV in both in vivo blood-feeding and ex vivo midgut infection models. Inhibition of RIA led to increased virus proliferation in the midgut, implicating RIA as an innate immune mechanism mediating midgut infection in this mosquito vector.


Assuntos
Aedes/virologia , Apoptose , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Mosquitos Vetores/virologia , Zika virus/fisiologia , Aedes/imunologia , Animais , Feminino , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mosquitos Vetores/imunologia
13.
mSphere ; 6(4): e0027121, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232077

RESUMO

Dengue virus serotype 4 (DENV-4) circulated in Aedes aegypti in 2016 and 2017 in Florida in the absence of human index cases, compelling a full assessment of local mosquito vector competence and DENV-4 risk. To better understand DENV-4 transmission risk in Florida, we used an expanded suite of tests to measure and compare the vector competencies of both an established colony of A. aegypti (Orlando strain [ORL]) and a field-derived colony from Collier County, FL, in 2018 (COL) for a Haitian DENV-4 human field isolate and a DENV-4 laboratory strain (Philippines H241). We immediately noted that ORL saliva positivity was higher for the field than for laboratory DENV-4 strains. In a subsequent comparison with the recent COL mosquito colony, we also observed significantly higher midgut infection of COL and ORL by the Haitian DENV-4 field strain and a significantly higher saliva positivity rate for COL, although overall saliva virus titers were similar between the two. These data point to a potential midgut infection barrier for the DENV-4 laboratory strain for both mosquito colonies and indicate that the marked differences in transmission potential estimates hinge on virus-vector combinations. Our study highlights the importance of leveraging an expanded suite of testing methods with emphasis on utilizing local mosquito populations and field-relevant dengue virus serotypes and strains to accurately estimate transmission risk in a given setting. IMPORTANCE DENV-4 was found circulating in Florida (FL) A. aegypti mosquitoes in the absence of human index cases in the state (2016 to 2017). How DENV-4 was maintained locally is unclear, presenting a major gap in our understanding of DENV-4 public health risk. We determined the baseline arbovirus transmission potential of laboratory and field colonies of A. aegypti for both laboratory and field isolates of DENV-4. We observed a high transmission potential of field populations of A. aegypti and evidence of higher vertical transmission of the DENV-4 field isolate, providing clues to the possible mechanism of undetected DENV-4 maintenance in the state. Our findings also move the field forward in the development of best practices for evaluating arbovirus vector competence, with evidence that transmission potential estimates vary depending on the mosquito-virus combinations. These data emphasize the poor suitability of laboratory-established virus strains and the high relevance of field-derived mosquito populations in estimating transmission risk.


Assuntos
Aedes/virologia , Vírus da Dengue/patogenicidade , Dengue/transmissão , Mosquitos Vetores/virologia , Sorogrupo , Animais , Dengue/virologia , Vírus da Dengue/classificação , Feminino , Florida , Haiti , Humanos , Transmissão Vertical de Doenças Infecciosas , Saliva/virologia , Carga Viral
14.
Front Microbiol ; 12: 734903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630357

RESUMO

Dengue virus is the most prevalent mosquito-borne virus, causing approximately 390 million infections and 25,000 deaths per year. Aedes aegypti, the primary mosquito vector of dengue virus, is well-established throughout the state of Florida, United States. Autochthonous transmission of dengue virus to humans in Florida has been increasing since 2009, alongside consistent importation of dengue cases. However, most cases of first infection with dengue are asymptomatic and the virus can be maintained in mosquito populations, complicating surveillance and leading to an underestimation of disease risk. Metagenomic sequencing of A. aegypti mosquitoes in Manatee County, Florida revealed the presence of dengue virus serotype 4 (DENV-4) genomes in mosquitoes from multiple trapping sites over 2years, in the absence of a human DENV-4 index case, and even though a locally acquired case of DENV-4 has never been reported in Florida. This finding suggested that: (i) DENV-4 may circulate among humans undetected; (ii) the virus was being maintained in the mosquito population, or (iii) the detected complete genome sequence may not represent a viable virus. This study demonstrates that an infectious clone generated from the Manatee County DENV-4 (DENV-4M) sequence is capable of infecting mammalian and insect tissue culture systems, as well as adult female A. aegypti mosquitoes when fed in a blood meal. However, the virus is subject to a dose dependent infection barrier in mosquitoes, and has a kinetic delay compared to a phylogenetically related wild-type (WT) control virus from a symptomatic child, DENV-4H (strain Homo sapiens/Haiti-0075/2015, GenBank accession MK514144.1). DENV-4M disseminates from the midgut to the ovary and saliva at 14days post-infection. Viral RNA was also detectable in the adult female offspring of DENV-4M infected mosquitoes. These results demonstrate that the virus is capable of infecting vector mosquitoes, is transmissible by bite, and is vertically transmitted, indicating a mechanism for maintenance in the environment without human-mosquito transmission. These findings suggest undetected human-mosquito transmission and/or long-term maintenance of the virus in the mosquito population is occurring in Florida, and underscore the importance of proactive surveillance for viruses in mosquitoes. GRAPHICAL ABSTRACTIn order to better assess the public health risk posed by a detection of DENV-4 RNA in Manatee County, FL Aedes aegypti, we produced an infectious clone using the sequence from the wild-caught mosquitoes and characterized it via laboratory infections of mosquitoes and mosquito tissues.

15.
Viruses ; 13(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835038

RESUMO

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Mosquitos Vetores/virologia , Aedes/genética , Animais , Dengue/epidemiologia , Vírus da Dengue/classificação , Florida/epidemiologia , Trato Gastrointestinal/virologia , Genótipo , Geografia , Humanos , Mosquitos Vetores/genética , Saliva/virologia , Sorogrupo
16.
Int J Infect Dis ; 113: 65-73, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592442

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with sporadic outbreaks in Cameroon since 2006. Viral whole genomes were generated to analyze the origins of evolutionary lineages, the potential of emergence/re-emergence, and to infer transmission dynamics of recent Cameroon CHIKV outbreak strains. METHODS: Samples collected between 2016 and 2019 during CHIKV outbreaks in Cameroon were screened for CHIKV using reverse transcription PCR (RT-PCR), followed by whole genome sequencing of positive samples. RESULTS: Three coding-complete CHIKV genomes were obtained from samples, which belong to an emerging sub-lineage of the East/Central/South African genotype and formed a monophyletic taxon with previous Central African strains. This clade, which we have named the new Central African clade, appears to be evolving at 3.0 × 10-4 nucleotide substitutions per site per year (95% highest posterior density (HPD) interval of 1.94 × 10-4 to 4.1 × 10-4). Notably, mutations in the envelope proteins (E1-A226V, E2-L210Q, and E2-I211T), which are known to enhance CHIKV adaptability and infectious potential in Aedes albopictus, were present in all strains and mapped to established high-density Ae. albopictus populations. CONCLUSIONS: These new CHIKV strains constitute a conserved genomic pool of an emerging sub-lineage, reflecting a putative vector host adaptation to Ae. albopictus, which has practically displaced Aedes aegypti from select regions of Cameroon.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Camarões/epidemiologia , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Surtos de Doenças , Humanos , Mosquitos Vetores , Mutação , Filogenia , Estudos Retrospectivos
17.
J Vector Ecol ; 45(2): 285-296, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33207061

RESUMO

Aedes japonicus japonicus (Theobald) is a relatively recent immigrant to the Pacific Northwest, having been collected in Washington State in 2001 and in British Columbia (BC) since 2014. We applied a molecular barcoding approach to determine the phylogenetic relationship of Ae. j. japonicus populations in BC with those from around the world. We sequenced a 617 base-pair segment of the cytochrome c oxidase 1 gene and a 330 base-pair region of the NADH dehydrogenase 4 gene to find genetic variation and characterize phylogenetic and haplotypic relationships based on nucleotide divergences. Our results revealed low genetic diversity in the BC samples, suggesting that these populations arose from the same introduction event. However, our approach lacked the granularity to identify the exact country of origin of the Ae. j. japonicus collected in BC. Future efforts should focus on detecting and preventing new Ae. j. japonicus introductions, recognizing that current molecular techniques are unable to pin-point the precise source of an introduction.


Assuntos
Aedes/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , NADH Desidrogenase/genética , Filogenia , Animais , Colúmbia Britânica , DNA Mitocondrial/química , Haplótipos
18.
Vaccines (Basel) ; 8(2)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485944

RESUMO

Sustained immune responses, particularly antibody responses, are key for protection against many endemic infectious diseases. Antibody responses are often accompanied by T helper (Th) cell immunity. Herein we study small biodegradable poly (ethylene glycol)-b-poly (lactic-co-glycolic acid) nanoparticles (PEG-b-PLGA NPs, 25-50 nm) as antigen- or adjuvant-carriers. The antigen carrier function of PEG-b-PLGA NPs was compared against an experimental benchmark polystyrene nanoparticles (PS NPs, 40-50 nm), both conjugated with the model antigen ovalbumin (OVA-PS NPs, and OVA-PEG-b-PLGA NPs). The OVA-PEG-b-PLGA NPs induced sustained antibody responses to Day 120 after two immunizations. The OVA-PEG-b-PLGA NPs as a self-adjuvanting vaccine further induced IL-4 producing T-helper cells (Th2), but not IFN-γ producing T-cells (Th1). The PEG-b-PLGA NPs as a carrier for CpG adjuvant (CpG-PEG-b-PLGA NPs) were also tested as mix-in vaccine adjuvants comparatively for protein antigens, or for protein-conjugated to PS NPs or to PEG-b-PLGA NPs. While the addition of this adjuvant NP did not further increase T-cell responses, it improved the consistency of antibody responses across all immunization groups. Together these data support further development of PEG-b-PLGA NPs as a vaccine carrier, particularly where it is desired to induce Th2 immunity and achieve sustained antibody titers in the absence of affecting Th1 immunity.

19.
Insects ; 11(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882829

RESUMO

Insecticide resistance in Aedes aegypti populations is a problem that hinders vector control and dengue prevention programs. In this study, we determined the susceptibility of Ae. aegypti populations from six Colombian regions to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene, which has been broadly involved in the resistance to this insecticide. The diversity of the gut microbiota of these mosquito populations was also analyzed. Only mosquitoes from Bello were susceptible to lambda-cyhalothrin and presented a lower allelic frequency of the V1016I mutation. Remarkably, there was not an important change in allelic frequencies among populations with different resistance ratios, indicating that other factors or mechanisms contributed to the resistant phenotype. Treatment of mosquitoes with antibiotics led us to hypothesize that the intestinal microbiota could contribute to the resistance to lambda-cyhalothrin. Beta diversity analysis showed significant differences in the species of bacteria present between susceptible and resistant populations. We identified 14 OTUs of bacteria that were unique in resistant mosquitoes. We propose that kdr mutations are important in the development of resistance to lambda-cyhalothrin at low insecticide concentrations but insect symbionts could play an essential role in the metabolization of pyrethroid insecticides at higher concentrations, contributing to the resistant phenotype in Ae. aegypti.

20.
Insect Sci ; 26(4): 635-648, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29389079

RESUMO

Aedes (Stegomyia) aegypti, the principal global vector of dengue viruses, has differences in its susceptibility to dengue virus infection. We compared the global expression of genes in the midguts of Colombian Ae. aegypti dengue-susceptible (Cali-S) and dengue-refractory (Cali-MIB) field derived strains after ingesting either a sugarmeal, a bloodmeal, or a bloodmeal containing dengue virus serotype 2 (DENV-2). Microarray-based transcriptome analysis among treatments indicated a total of 4725 transcripts with differential expression between the two strains. Eleven genes were selected from different functional groups based on their significant up or down expression levels as well as reports in the literature suggesting they are associated with dengue virus elimination. We measured mRNA abundance of these 11 genes at 0, 8, 24, and 36 h postinfection using quantitative real time PCR (qPCR) to confirm the microarray results and assess any temporal patterns. Four genes were selected (Gram-negative binding protein-GNBP [AAEL009176], Niemann Pick Type-C2-NPC2 [AAEL015136], Keratinocyte lectin [AAEL009842], and Cathepsin-b [AAEL007585]) for knockdown experiments using RNA interference (RNAi) methodology to determine the phenotype (DENV-2 susceptible or refractory). Silencing GNBP, Cathepsin-b and Keratinocyte lectin reduced the percentage of mosquitoes with disseminated virus in the Cali-S strain to 8%, 20%, and 12% respectively compared with 96% in the controls. Silencing of NPC2 increased the percentage of mosquitos with disseminated virus infections in Cali-MIB to 66% compared with 35% in the controls. This study provides insight into genes that may contribute to the Cali-S susceptible and Cali-MIB refractory phenotypes in Ae. aegypti.


Assuntos
Aedes/genética , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/fisiologia , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA