Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neural Comput ; 34(7): 1588-1615, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35671472

RESUMO

The problem of selecting one action from a set of different possible actions, simply referred to as the problem of action selection, is a ubiquitous challenge in the animal world. For vertebrates, the basal ganglia (BG) are widely thought to implement the core computation to solve this problem, as its anatomy and physiology are well suited to this end. However, the BG still display physiological features whose role in achieving efficient action selection remains unclear. In particular, it is known that the two types of dopaminergic receptors (D1 and D2) present in the BG give rise to mechanistically different responses. The overall effect will be a difference in sensitivity to dopamine, which may have ramifications for action selection. However, which receptor type leads to a stronger response is unclear due to the complexity of the intracellular mechanisms involved. In this study, we use an existing, high-level computational model of the BG, which assumes that dopamine contributes to action selection by enabling a switch between different selection regimes, to predict which of D1 or D2 has the greater sensitivity. Thus, we ask, Assuming dopamine enables a switch between action selection regimes in the BG, what functional sensitivity values would result in improved action selection computation? To do this, we quantitatively assessed the model's capacity to perform action selection as we parametrically manipulated the sensitivity weights of D1 and D2. We show that differential (rather than equal) D1 and D2 sensitivity to dopaminergic input improves the switch between selection regimes during the action selection computation in our model. Specifically, greater D2 sensitivity compared to D1 led to these improvements.


Assuntos
Dopamina , Receptores de Dopamina D1 , Animais , Gânglios da Base/metabolismo , Dopamina/fisiologia , Receptores de Dopamina D1/metabolismo
2.
J Neurosci ; 40(18): 3604-3620, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32234779

RESUMO

Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy.SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control.


Assuntos
Movimento/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Punição/psicologia , Recompensa , Adolescente , Adulto , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
3.
J Neurosci ; 39(47): 9383-9396, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604835

RESUMO

The addition of rewarding feedback to motor learning tasks has been shown to increase the retention of learning, spurring interest in its possible utility for rehabilitation. However, motor tasks using rewarding feedback have repeatedly been shown to lead to great interindividual variability in performance. Understanding the causes of such variability is vital for maximizing the potential benefits of reward-based motor learning. Thus, using a large human cohort of both sexes (n = 241), we examined whether spatial (SWM), verbal, and mental rotation (RWM) working memory capacity and dopamine-related genetic profiles were associated with performance in two reward-based motor tasks. The first task assessed the participant's ability to follow a slowly shifting reward region based on hit/miss (binary) feedback. The second task investigated the participant's capacity to preserve performance with binary feedback after adapting to the rotation with full visual feedback. Our results demonstrate that higher SWM is associated with greater success and an enhanced capacity to reproduce a successful motor action, measured as change in reach angle following reward. In contrast, higher RWM was predictive of an increased propensity to express an explicit strategy when required to make large reach angle adjustments. Therefore, SWM and RWM were reliable, but dissociable, predictors of success during reward-based motor learning. Change in reach direction following failure was also a strong predictor of success rate, although we observed no consistent relationship with working memory. Surprisingly, no dopamine-related genotypes predicted performance. Therefore, working memory capacity plays a pivotal role in determining individual ability in reward-based motor learning.SIGNIFICANCE STATEMENT Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic behaviors that cause varying degrees of task success. Yet, the factors determining an individual's capacity to use reward-based feedback are unclear. Here, we assessed a wide range of possible candidate predictors, and demonstrate that domain-specific working memory plays an essential role in determining individual capacity to use reward-based feedback. Surprisingly, genetic variations in dopamine availability were not found to play a role. This is in stark contrast with seminal work in the reinforcement and decision-making literature, which show strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, our results provide novel insights into reward-based motor learning, highlighting a key role for domain-specific working memory capacity.


Assuntos
Dopamina/metabolismo , Variação Genética/fisiologia , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Movimento/fisiologia , Recompensa , Adolescente , Adulto , Dopamina/genética , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Polimorfismo de Nucleotídeo Único/fisiologia , Desempenho Psicomotor , Adulto Jovem
4.
Exp Brain Res ; 238(7-8): 1781-1793, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32274520

RESUMO

A wealth of evidence describes the strong positive impact that reward has on motor control at the behavioural level. However, surprisingly little is known regarding the neural mechanisms which underpin these effects, beyond a reliance on the dopaminergic system. In recent work, we developed a task that enabled the dissociation of the selection and execution components of an upper limb reaching movement. Our results demonstrated that both selection and execution are concommitently enhanced by immediate reward availability. Here, we investigate what the neural underpinnings of each component may be. To this end, we aimed to alter the cortical excitability of the ventromedial prefrontal cortex and supplementary motor area using continuous theta-burst transcranial magnetic stimulation (cTBS) in a within-participant design (N = 23). Both cortical areas are involved in determining an individual's sensitivity to reward and physical effort, and we hypothesised that a change in excitability would result in the reward-driven effects on action selection and execution to be altered, respectively. To increase statistical power, participants were pre-selected based on their sensitivity to reward in the reaching task. While reward did lead to enhanced performance during the cTBS sessions and a control sham session, cTBS was ineffective in altering these effects. These results may provide evidence that other areas, such as the primary motor cortex or the premotor area, may drive the reward-based enhancements of motor performance.


Assuntos
Excitabilidade Cortical , Córtex Motor , Recompensa , Estimulação Magnética Transcraniana , Potencial Evocado Motor , Humanos , Movimento
5.
J Neurophysiol ; 119(6): 2241-2255, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537918

RESUMO

Despite increasing interest in the role of reward in motor learning, the underlying mechanisms remain ill defined. In particular, the contribution of explicit processes to reward-based motor learning is unclear. To address this, we examined subjects' ( n = 30) ability to learn to compensate for a gradually introduced 25° visuomotor rotation with only reward-based feedback (binary success/failure). Only two-thirds of subjects ( n = 20) were successful at the maximum angle. The remaining subjects initially followed the rotation but after a variable number of trials began to reach at an insufficiently large angle and subsequently returned to near-baseline performance ( n = 10). Furthermore, those who were successful accomplished this via a large explicit component, evidenced by a reduction in reach angle when they were asked to remove any strategy they employed. However, both groups displayed a small degree of remaining retention even after the removal of this explicit component. All subjects made greater and more variable changes in reach angle after incorrect (unrewarded) trials. However, subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which they followed the rotation, a pattern previously found in parkinsonian patients. In a second experiment, the addition of a secondary mental rotation task completely abolished learning ( n = 10), while a control group replicated the results of the first experiment ( n = 10). These results emphasize a pivotal role of explicit processes during reinforcement-based motor learning, and the susceptibility of this form of learning to disruption has important implications for its potential therapeutic benefits. NEW & NOTEWORTHY We demonstrate that learning a visuomotor rotation with only reward-based feedback is principally accomplished via the development of a large explicit component. Furthermore, this form of learning is susceptible to disruption with a secondary task. The results suggest that future experiments utilizing reward-based feedback should aim to dissect the roles of implicit and explicit reinforcement learning systems. Therapeutic motor learning approaches based on reward should be aware of the sensitivity to disruption.


Assuntos
Movimento , Condicionamento Físico Humano/métodos , Recompensa , Adolescente , Adulto , Feminino , Humanos , Masculino , Desempenho Psicomotor , Esquema de Reforço
6.
Elife ; 122023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637162

RESUMO

Although it is well established that motivational factors such as earning more money for performing well improve motor performance, how the motor system implements this improvement remains unclear. For instance, feedback-based control, which uses sensory feedback from the body to correct for errors in movement, improves with greater reward. But feedback control encompasses many feedback loops with diverse characteristics such as the brain regions involved and their response time. Which specific loops drive these performance improvements with reward is unknown, even though their diversity makes it unlikely that they are contributing uniformly. We systematically tested the effect of reward on the latency (how long for a corrective response to arise?) and gain (how large is the corrective response?) of seven distinct sensorimotor feedback loops in humans. Only the fastest feedback loops were insensitive to reward, and the earliest reward-driven changes were consistently an increase in feedback gains, not a reduction in latency. Rather, a reduction of response latencies only tended to occur in slower feedback loops. These observations were similar across sensory modalities (vision and proprioception). Our results may have implications regarding feedback control performance in athletic coaching. For instance, coaching methodologies that rely on reinforcement or 'reward shaping' may need to specifically target aspects of movement that rely on reward-sensitive feedback responses.


Assuntos
Retroalimentação Sensorial , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Retroalimentação Sensorial/fisiologia , Tempo de Reação/fisiologia , Encéfalo/fisiologia , Recompensa
7.
Sci Rep ; 8(1): 9121, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904096

RESUMO

The motor system's ability to adapt to environmental changes is essential for maintaining accurate movements. Such adaptation recruits several distinct systems: cerebellar sensory-prediction error learning, success-based reinforcement, and explicit control. Although much work has focused on the relationship between cerebellar learning and explicit control, there is little research regarding how reinforcement and explicit control interact. To address this, participants first learnt a 20° visuomotor displacement. After reaching asymptotic performance, binary, hit-or-miss feedback (BF) was introduced either with or without visual feedback, the latter promoting reinforcement. Subsequently, retention was assessed using no-feedback trials, with half of the participants in each group being instructed to stop aiming off target. Although BF led to an increase in retention of the visuomotor displacement, instructing participants to stop re-aiming nullified this effect, suggesting explicit control is critical to BF-based reinforcement. In a second experiment, we prevented the expression or development of explicit control during BF performance, by either constraining participants to a short preparation time (expression) or by introducing the displacement gradually (development). Both manipulations strongly impaired BF performance, suggesting reinforcement requires both recruitment and expression of an explicit component. These results emphasise the pivotal role explicit control plays in reinforcement-based motor learning.


Assuntos
Adaptação Fisiológica , Cerebelo/fisiologia , Retroalimentação Sensorial/fisiologia , Reforço Psicológico , Adolescente , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA