Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
New Phytol ; 242(6): 2845-2856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623034

RESUMO

Leaf venation is a pivotal trait in the success of vascular plants. Whereas gymnosperms have single or sparsely branched parallel veins, angiosperms developed a hierarchical structure of veins that form a complex reticulum. Its physiological consequences are considered to have enabled angiosperms to dominate terrestrial ecosystems in the Late Cretaceous and Cenozoic. Although a hierarchical-reticulate venation also occurs in some groups of extinct seed plants, it is unclear whether these are stem relatives of angiosperms or have evolved these traits in parallel. Here, we re-examine the morphology of the enigmatic foliage taxon Furcula, a potential early Mesozoic angiosperm relative, and argue that its hierarchical vein network represents convergent evolution (in the Late Triassic) with flowering plants (which developed in the Early Cretaceous) based on details of vein architecture and the absence of angiosperm-like stomata and guard cells. We suggest that its nearest relatives are Peltaspermales similar to Scytophyllum and Vittaephyllum, the latter being a genus that originated during the Late Triassic (Carnian) and shares a hierarchical vein system with Furcula. We further suggest that the evolution of hierarchical venation systems in the early Permian, the Late Triassic, and the Early Cretaceous represent 'natural experiments' that might help resolve the selective pressures enabling this trait to evolve.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Folhas de Planta , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Folhas de Planta/anatomia & histologia , Fósseis/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia
2.
Am J Bot ; 111(2): e16282, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334302

RESUMO

Although molecular phylogenetics remains the most widely used method of inferring the evolutionary history of living groups, the last decade has seen a renewed interest in morphological phylogenetics, mostly driven by the promises that integrating the fossil record in phylogenetic trees offers to our understanding of macroevolutionary processes and dynamics and the possibility that the inclusion of fossil taxa could lead to more accurate phylogenetic hypotheses. The plant fossil record presents some challenges to its integration in a phylogenetic framework. Phylogenies including plant fossils often retrieve uncertain relationships with low support, or lack of resolution. This low support is due to the pervasiveness of morphological convergence among plant organs and the fragmentary nature of many plant fossils, and it is often perceived as a fundamental weakness reducing the utility of plant fossils in phylogenetics. Here I discuss the importance of uncertainty in morphological phylogenetics and how we can identify important information from different patterns and types of uncertainty. I also review a set of methodologies that can allow us to understand the causes underpinning uncertainty and how these practices can help us to further our knowledge of plant fossils. I also propose that a new visual language, including the use of networks instead of trees, represents an improvement on the old visualization based on consensus trees and more adequately serves phylogeneticists working with plant fossils. This set of methods and visualization tools represents an important way forward in a fundamental field for our understanding of the evolutionary history of plants.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Incerteza , Plantas/genética
3.
New Phytol ; 240(4): 1616-1635, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37302411

RESUMO

The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.


Assuntos
Cycadopsida , Fósseis , Filogenia , Teorema de Bayes , Cycadopsida/anatomia & histologia , Biodiversidade
4.
New Phytol ; 238(6): 2668-2684, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651063

RESUMO

Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely. We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia. We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny. The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.


Assuntos
Fósseis , Plantas , Filogenia , Clima Desértico , Aclimatação
5.
Am J Bot ; 109(12): 2068-2081, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310350

RESUMO

PREMISE: Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS: We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS: Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS: Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.


Assuntos
Gleiquênias , Micorrizas , Micorrizas/fisiologia , Gleiquênias/fisiologia , Filogenia , Esporos Fúngicos , Evolução Biológica , Esporos/fisiologia
6.
Ann Bot ; 128(5): 577-588, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34265043

RESUMO

BACKGROUND AND AIMS: The gymnosperm order Cycadales is pivotal to our understanding of seed-plant phylogeny because of its phylogenetic placement close to the root node of extant spermatophytes and its combination of both derived and plesiomorphic character states. Although widely considered a 'living fossil' group, extant cycads display a high degree of morphological and anatomical variation. We investigate stomatal development in Zamiaceae to evaluate variation within the order and homologies between cycads and other seed plants. METHODS: Leaflets of seven species across five genera representing all major clades of Zamiaceae were examined at various stages of development using light microscopy and confocal microscopy. KEY RESULTS: All genera examined have lateral subsidiary cells of perigenous origin that differ from other pavement cells in mature leaflets and could have a role in stomatal physiology. Early epidermal patterning in a 'quartet' arrangement occurs in Ceratozamia, Zamia and Stangeria. Distal encircling cells, which are sclerified at maturity, are present in all genera except Bowenia, which shows relatively rapid elongation and differentiation of the pavement cells during leaflet development. CONCLUSIONS: Stomatal structure and development in Zamiaceae highlights some traits that are plesiomorphic in seed plants, including the presence of perigenous encircling subsidiary cells, and reveals a clear difference between the developmental trajectories of cycads and Bennettitales. Our study also shows an unexpected degree of variation among subclades in the family, potentially linked to differences in leaflet development and suggesting convergent evolution in cycads.


Assuntos
Zamiaceae , Cycadopsida , Fósseis , Filogenia , Sementes
7.
Am J Bot ; 108(12): 2405-2415, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622937

RESUMO

PREMISE: Unlike most flowering plants, orchid flowers have under-developed ovules that complete development only after pollination. Classical studies reported variation in the stage in which ovule development is arrested, but the extent of this variation and its evolutionary and ecological significance are unclear. METHODS: Here, we used light microscopy to observe ovule development at anthesis for 39 species not previously studied and surveyed the literature gaining information on 94 orchid species. Tropical and temperate members of all five orchid subfamilies as well as species with contrasting pollination strategies (rewarding versus deceptive) and life forms (epiphytic versus terrestrial) were represented. We analyzed the data using statistical comparisons and a phylogenetic generalized least square (PGLS) analysis. RESULTS: Apostasioideae, the sister to the rest of the orchids, have mature ovules similar to other Asparagales, while under-differentiated ovules are present in the other subfamilies. Ovule developmental stages showed high variation even among closely related groups. Ovules were more developed in terrestrial than in epiphytic, in temperate than in tropical, and in rewarding than in deceptive pollination orchid species. This latter comparison was also significant in the PGLS analysis. CONCLUSIONS: These results suggest that ovule developmental stage in orchids can be shaped by ecological factors, such as seasonality and pollination strategy, and can be selected for optimizing female reproductive investment.


Assuntos
Orchidaceae , Óvulo Vegetal , Flores , Filogenia , Polinização
8.
New Phytol ; 228(1): 344-360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400897

RESUMO

The pinnately lobed Aptian leaf fossil Mesodescolea plicata was originally described as a cycad, but new evidence from cuticle structure suggests that it is an angiosperm. Here we document the morphology and cuticle anatomy of Mesodescolea and explore its significance for early angiosperm evolution. We observed macrofossils and cuticles of Mesodescolea with light, scanning electron and transmission electron microscopy, and used phylogenetic methods to test its relationships among extant angiosperms. Mesodescolea has chloranthoid teeth and tertiary veins forming elongate areoles. Its cuticular morphology and ultrastructure reject cycadalean affinities, whereas its guard cell shape and stomatal ledges are angiospermous. It shares variable stomatal complexes and epidermal oil cells with angiosperm leaves from the lower Potomac Group. Phylogenetic analyses and hypothesis testing support its placement within the basal ANITA grade, most likely in Austrobaileyales, but it diverges markedly in leaf form and venation. Although many Early Cretaceous angiosperms fall within the morphological range of extant taxa, Mesodescolea reveals unexpected early morphological and ecophysiological trends. Its similarity to other Early Cretaceous lobate leaves, many identified previously as eudicots but in some cases pre-dating the appearance of tricolpate pollen, may indicate that Mesodescolea is part of a larger extinct lineage of angiosperms.


Assuntos
Magnoliopsida , Evolução Biológica , Cycadopsida , Fósseis , Magnoliopsida/genética , Filogenia , Folhas de Planta
9.
BMC Evol Biol ; 19(1): 66, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819112

RESUMO

BACKGROUND: ß-Amylases (BAMs) are a multigene family of glucan hydrolytic enzymes playing a key role not only for plant biology but also for many industrial applications, such as the malting process in the brewing and distilling industries. BAMs have been extensively studied in Arabidopsis thaliana where they show a surprising level of complexity in terms of specialization within the different isoforms as well as regulatory functions played by at least three catalytically inactive members. Despite the importance of BAMs and the fact that multiple BAM proteins are also present in other angiosperms, little is known about their phylogenetic history or functional relationship. RESULTS: Here, we examined 961 ß-amylase sequences from 136 different algae and land plant species, including 66 sequenced genomes and many transcriptomes. The extraordinary number and the diversity of organisms examined allowed us to reconstruct the main patterns of ß-amylase evolution in land plants. We identified eight distinct clades in angiosperms, which results from extensive gene duplications and sub- or neo-functionalization. We discovered a novel clade of BAM, absent in Arabidopsis, which we called BAM10. BAM10 emerged before the radiation of seed plants and has the feature of an inactive enzyme. Furthermore, we report that BAM4 - an important protein regulating Arabidopsis starch metabolism - is absent in many relevant starch-accumulating crop species, suggesting that starch degradation may be differently regulated between species. CONCLUSIONS: BAM proteins originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity. Our phylogenetic analyses provide essential insights for future functional studies of this important class of storage glucan hydrolases and regulatory proteins.


Assuntos
Embriófitas/enzimologia , Evolução Molecular , Proteínas de Plantas/genética , beta-Amilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Embriófitas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/fisiologia , beta-Amilase/fisiologia
10.
New Phytol ; 223(1): 83-99, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30681148

RESUMO

The timing of the origin of angiosperms is a hotly debated topic in plant evolution. Molecular dating analyses that consistently retrieve pre-Cretaceous ages for crown-group angiosperms have eroded confidence in the fossil record, which indicates a radiation and possibly also origin in the Early Cretaceous. Here, we evaluate paleobotanical evidence on the age of the angiosperms, showing how fossils provide crucial data for clarifying the situation. Pollen floras document a Northern Gondwanan appearance of monosulcate angiosperms in the Valanginian and subsequent poleward spread of monosulcates and tricolpate eudicots, accelerating in the Albian. The sequence of pollen types agrees with molecular phylogenetic inferences on the course of pollen evolution, but it conflicts strongly with Triassic and early Jurassic molecular ages, and the discrepancy is difficult to explain by geographic or taphonomic biases. Critical scrutiny shows that supposed pre-Cretaceous angiosperms either represent other plant groups or lack features that might confidently assign them to the angiosperms. However, the record may allow the Late Jurassic existence of ecologically restricted angiosperms, like those seen in the basal ANITA grade. Finally, we examine recently recognized biases in molecular dating and argue that a thoughtful integration of fossil and molecular evidence could help resolve these conflicts.


Assuntos
Fósseis , Magnoliopsida/crescimento & desenvolvimento , Geografia , Magnoliopsida/ultraestrutura , Filogenia , Fatores de Tempo
11.
Plant Cell ; 28(6): 1472-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27207856

RESUMO

To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Mutação , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
12.
Ann Bot ; 123(4): 611-623, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30475945

RESUMO

BACKGROUND AND AIMS: Heteroblasty is a non-reversible morphological change associated with life stage change and has been linked to predictable environmental variation. It is present in several clades from mediterranean-type climates, such as African Restionaceae (restios). These have heteroblastic shoots: juvenile shoots are thin, branched and sterile (sterile shoots); adult shoots are thicker and less branched, and bear inflorescences (reproductive shoots). Ten per cent of the restios retain juvenile-like, sterile shoots as adults (neoteny). We hypothesize (1) that the two shoot types differ in ecophysiological attributes, and (2) that these shoot types (and the neoteny) are associated with different environments. METHODS: We measured shoot mass per surface area (SMA), maximum photosynthetic capacity per biomass (Amass) and chlorenchyma to ground tissue ratio (CGR) of both shoot types in 14 restio species. We also calculated environmental niche overlap between neotenous and non-neotenous species using an improved multidimensional overlap function based on occurrence data, and linked shoot types with environments using a phylogenetic generalized linear model. KEY RESULTS: Sterile shoots showed higher Amass, lower SMA and higher CGR than reproductive shoots. Neotenous and non-neotenous species overlapped ecologically less than expected by chance: neotenous species favoured more mesic, non-seasonal conditions. CONCLUSIONS: We associate sterile shoot morphology with acquisitive ecophysiological strategies and reproductive shoots with conservative strategies. The heteroblastic switch optimizes carbon efficiency in the juvenile phase (by sterile shoots) in the mesic post-fire conditions. The adult shoots present a compromise between a more conservative strategy favourable under harsher conditions and reproductive success. Heteroblasty in seasonally arid, oligotrophic ecosystems with predictable, fire-driven shifts in water and nutrient availability might play a role in the success of restios and other species-rich lineages in mediterranean-type ecosystems. It may represent a previously unrecognized adaptation in mediterranean clades sharing similar conditions, contributing to their ecological and taxonomic dominance.


Assuntos
Ecossistema , Características de História de Vida , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Brotos de Planta/crescimento & desenvolvimento , África , Biomassa , Magnoliopsida/crescimento & desenvolvimento , Fotossíntese , Brotos de Planta/anatomia & histologia
13.
Biol Lett ; 15(7): 20190114, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31288679

RESUMO

The morphology of the early ontogenetic stages of cycad foliage may help resolve the relationships between extinct to extant cycad lineages. However, prior to this study, fossil evidence of cycad seedlings was not known. We describe a compression fossil of cycad eophylls with co-occurring fully developed leaves of adult specimens from the early Palaeocene ( ca 63.8 Ma) Castle Rock flora from the Denver Basin, CO, USA and assign it to the fossil genus Dioonopsis (Cycadales) based on leaf morphology and anatomy. The new fossil seedling foliage is particularly important because fully differentiated pinnate leaves of adult plants and the eophylls belong to the same species based on shared epidermal micromorphology, therefore, increasing the number of morphological characteristics that can be used to place Dioonopsis phylogenetically. Significantly, the seedling fossil has a basic foliage structure that is very similar to seedlings of extant cycads, which is consistent with a cycadalean affinity of Dioonopsis. Nevertheless, the set of morphological characters in the seedling and adult specimens of Dioonopsis suggests a distant relationship between Dioonopsis and extant Dioon. This indicates that extinct lineages of cycads were present and widespread during the early Cenozoic (Palaeogene) coupled with the subordinate role of extant genera in the Palaeogene fossil record of cycads.


Assuntos
Cycadopsida , Fósseis , Filogenia , Folhas de Planta , Plântula
14.
Grana ; 58(4): 227-275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275086

RESUMO

The pantropical Picrodendraceae produce mostly spheroidal to slightly oblate, echinate pollen grains equipped with narrow circular to elliptic pori that can be hard to identify to family level in both extant and fossil material using light microscopy only. Fossil pollen of the family have been described from the Paleogene of America, Antarctica, Australia, New Zealand, and Europe, but until now none have been reported from Afro-India. Extant pollen described here include representatives from all recent Picrodendraceae genera naturally occurring in Africa and/or Madagascar and south India and selected closely related tropical American taxa. Our analyses, using combined light microscopy and scanning electron microscopy, show that pollen of the Afro-Indian genera encompass three morphological types: Type 1, comprising only Hyaenanche; Type 2, including Aristogeitonia, Mischodon, Oldfieldia and Voatamalo; Type 3, comprising the remaining two genera, Androstachys and Stachyandra. Based on the pollen morphology presented here it is evident that some previous light microscopic accounts of spherical and echinate fossil pollen affiliated with Arecaceae, Asteraceae, Malvaceae, and Myristicaceae from the African continent could belong to Picrodendraceae. The pollen morphology of Picrodendraceae, fossil pollen records, a dated intra-familial phylogeny, seed dispersal modes, and the regional Late Cretaceous to early Cenozoic paleogeography, together suggest the family originated in the Americas and dispersed from southern America across Antarctica and into Australasia. A second dispersal route is believed to have occurred from the Americas into continental Africa via the North Atlantic Land Bridge and Europe.

15.
PLoS Biol ; 13(2): e1002080, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710501

RESUMO

The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis.


Assuntos
Amilose/biossíntese , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Sintase do Amido/genética , Amilopectina/metabolismo , Arabidopsis/classificação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cruzamento , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Sintase do Amido/metabolismo
16.
BMC Evol Biol ; 17(1): 97, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388891

RESUMO

BACKGROUND: Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. RESULTS: We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. CONCLUSION: Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.


Assuntos
Evolução Biológica , Cycadopsida , Fósseis , Argentina , Austrália , Especiação Genética , Filogenia , Folhas de Planta/anatomia & histologia , América do Sul
17.
New Phytol ; 216(4): 1191-1204, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877333

RESUMO

Protophloem and metaphloem sieve tubes are essential for transporting carbohydrates and signalling molecules towards sink tissues. OCTOPUS (OPS) was previously identified as an important regulator of protophloem differentiation in Arabidopsis roots. Here, we investigated the role of OCTOPUS-LIKE 2 (OPL2), a gene homologous to OPS. OPL2 expression patterns were analysed, and functional equivalence of OPS and OPL2 was tested. Mutant and double mutant phenotypes were investigated. OPS and OPL2 displayed overlapping expression patterns and a high degree of functional overlap. A mutation in OPL2 revealed redundant functions of OPS and OPL2 in developmental processes in which OPS was known to play a role, notably cotyledon vascular patterning and protophloem development. Moreover, we also uncovered redundant roles for OPS and OPL2 in leaf vascular patterning and, most interestingly, metaphloem sieve tube differentiation. Our results reveal a novel OPS-like protein that, together with OPS, is an important regulator of vascular patterning, root growth and phloem development. OPS and OPL2 are the first genes identified that play a role in metaphloem sieve tube differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Família Multigênica , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia
18.
Ann Bot ; 120(6): 855-891, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29165551

RESUMO

BACKGROUND: In contrast to most animals, plants have an indeterminate body plan, which allows them to add new body parts during their lifetime. A plant's realized modular construction is the result of exogenous constraints and endogenous processes. This review focuses on endogenous processes that shape plant architectures and their evolution. SCOPE: The phylogenetic distribution of plant growth forms across the phylogeny implies that body architectures have originated and been lost repeatedly, being shaped by a limited set of genetic pathways. We (1) synthesize concepts of plant architecture, so far captured in 23 models; (2) extend them to the fossil record; (3) summarize what is known about their developmental genetics; (4) use a phylogenetic approach in several groups to infer how plant architecture has changed and by which intermediate steps; and (5) discuss which macroecological factors may constrain the geographic and ecological distribution of plant architectures. CONCLUSIONS: Dichotomously branching Paleozoic plants already encompassed a considerable diversity of growth forms, here captured in 12 new architectural models. Plotting the frequency of branching types through time based on an analysis of 58 927 land plant fossils revealed a decrease in dichotomous branching throughout the Devonian and Carboniferous, mirrored by an increase in other branching types including axillary branching. We suggest that the evolution of seed plant megaphyllous leaves enabling axillary branching contributed to the demise of dichotomous architectures. The developmental-genetic bases for key architectural traits underlying sympodial vs. monopodial branching, rhythmic vs. continuous growth, and axillary branching and its localization are becoming well understood, while the molecular basis of dichotomous branching and plagiotropy remains elusive. Three phylogenetic case studies of architecture evolution in conifers, Aloe and monocaulous arborescent vascular plants reveal relationships between architectural models and show that some are labile in given groups, whereas others are widely conserved, apparently shaped by ecological factors, such as intercepted sunlight, temperature, humidity and seasonality.


Assuntos
Evolução Biológica , Filogenia , Desenvolvimento Vegetal , Plantas/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Vegetal/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas/genética
19.
New Phytol ; 205(3): 1330-1341, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25345817

RESUMO

UV-B radiation damage in leaves is prevented by epidermal UV-screening compounds that can be modulated throughout ontogeny. In epiphytic orchids, roots need to be protected against UV-B because they photosynthesize, sometimes even replacing the leaves. How orchid roots, which are covered by a dead tissue called velamen, avoid UV-B radiation is currently unknown. We tested for a UV-B protective function of the velamen using gene expression analyses, mass spectrometry, histochemistry, and chlorophyll fluorescence in Phalaenopsis × hybrida roots. We also investigated its evolution using comparative phylogenetic methods. Our data show that two paralogues of the chalcone synthase (CHS) gene family are UV-B-induced in orchid root tips, triggering the accumulation of two UV-B-absorbing flavonoids and resulting in effective protection of the photosynthetic root cortex. Phylogenetic and dating analyses imply that the two CHS lineages duplicated c. 100 million yr before the rise of epiphytic orchids. These findings indicate an additional role for the epiphytic orchid velamen previously thought to function solely in absorbing water and nutrients. This new function, which fundamentally differs from the mechanism of UV-B avoidance in leaves, arose following an ancient duplication of CHS, and has probably contributed to the family's expansion into the canopy during the Cenozoic.


Assuntos
Orchidaceae/fisiologia , Orchidaceae/efeitos da radiação , Fotossíntese , Filogenia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos da radiação , Raios Ultravioleta , Aciltransferases/genética , Aciltransferases/metabolismo , Apigenina/metabolismo , Cruzamentos Genéticos , Flavonoides/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucosídeos/metabolismo , Orchidaceae/genética , Estresse Fisiológico/efeitos da radiação , Fatores de Tempo
20.
Commun Biol ; 7(1): 328, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485767

RESUMO

The living fossil metaphor is tightly linked with the cycads. This group of gymnosperms is supposed to be characterised by long-term morphological stasis, particularly after their peak of diversity and disparity in the Jurassic. However, no formal test of this hypothesis exists. Here, we use a recent phylogenetic framework and an improved character matrix to reconstruct the Disparity Through Time for cycad leaves using a Principal Coordinate Analysis and employing Pre-Ordination Ancestral State Reconstruction to test the impact of sampling on the results. Our analysis shows that the cycad leaf morsphospace expanded up to the present, with numerous shifts in its general positioning, independently of sampling biases. Moreover, they also show that Zamiaceae expanded rapidly in the Early Cretaceous and continued to expand up to the present, while now-extinct clades experienced a slow contraction from their peak in the Triassic. We also show that rates of evolution were constantly high up to the Early Cretaceous, and then experienced a slight decrease in the Paleogene, followed by a Neogene acceleration. These results show a much more dynamic history for cycads, and suggest that the 'living fossil' metaphor is actually a hindrance to our understanding of their macroevolution.


Assuntos
Cycadopsida , Filogenia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA