Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058361

RESUMO

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Assuntos
Técnicas Eletroquímicas , Eletroquímica , Enzimas/química , Algoritmos , Soluções Tampão , Eletrodos , Eletrólitos/química , Microeletrodos , Estrutura Molecular , Porosidade , Relação Estrutura-Atividade
2.
Angew Chem Int Ed Engl ; 60(50): 26303-26307, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34472692

RESUMO

Semi-artificial photoelectrochemistry can combine state-of-the-art photovoltaic light-absorbers with enzymes evolved for selective fuel-forming reactions such as CO2 reduction, but the overall performance of such hybrid systems has been limited to date. Here, the electrolyte constituents were first tuned to establish an optimal local environment for a W-formate dehydrogenase to perform electrocatalysis. The CO2 reductase was then interfaced with a triple cation lead mixed-halide perovskite through a hierarchically structured porous TiO2 scaffold to produce an integrated photocathode achieving a photocurrent density of -5 mA cm-2 at 0.4 V vs. the reversible hydrogen electrode during simulated solar light irradiation. Finally, the combination with a water-oxidizing BiVO4 photoanode produced a bias-free integrated biophotoelectrochemical tandem device (semi-artificial leaf) with a solar CO2 -to-formate energy conversion efficiency of 0.8 %.

3.
Liver Transpl ; 26(1): 113-126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642174

RESUMO

Tissue inhibitor of metalloproteinase (TIMP) 3 is a naturally occurring inhibitor of a broad range of proteases, with key roles in extracellular matrix turnover and in the pathogenesis of various diseases. In this study, we investigated the response of mice lacking TIMP3 (TIMP3-/-) to hepatic ischemia/reperfusion injury (IRI). We report here that TIMP3-/- mice showed an enhanced inflammatory response, exacerbated organ damage, and further impaired liver function after IRI when compared with their wild-type littermates. Loss of TIMP3 led to the cleavage and shedding of E-cadherin during hepatic IRI; the full-length 120-kDa E-cadherin and the ratio of 38-kDa C-terminal fragment/120-kDa E-cadherin were decreased and increased, respectively, in TIMP3-/- livers after IRI. Moreover, GI254023X, a potent inhibitor of a disintegrin and metalloprotease (ADAM) 10, was capable of partially rescuing the expression of E-cadherin in the TIMP3-null hepatocytes. The proteolysis of E-cadherin in the TIMP3-/- livers was also linked to the loss of ß-catenin from the hepatocyte membranes and to an increased susceptibility to apoptosis after liver IRI. In a similar fashion, depression of the E-cadherin/ß-catenin complex mediated by TIMP3 deletion and knockdown of ß-catenin by small interfering RNA were both capable of inducing caspase activation in isolated hepatocytes subjected to H2 O2 oxidative stress. Hence, these results support a protective role for TIMP3 expression in sheltering the hepatocyte E-cadherin/ß-catenin complex from proteolytic processing and inhibiting apoptosis after hepatic IRI.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Animais , Caderinas , Hepatócitos , Isquemia , Fígado , Metaloproteases , Camundongos , Inibidor Tecidual de Metaloproteinase-3/genética , beta Catenina
4.
Hum Brain Mapp ; 40(3): 879-888, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30367722

RESUMO

Neuroimaging studies have shown that spontaneous brain activity is characterized as changing networks of coherent activity across multiple brain areas. However, the directionality of functional interactions between the most active regions in our brain at rest remains poorly understood. Here, we examined, at the whole-brain scale, the main drivers and directionality of interactions that underlie spontaneous human brain activity by applying directed functional connectivity analysis to electroencephalography (EEG) source signals. We found that the main drivers of electrophysiological activity were the posterior cingulate cortex (PCC), the medial temporal lobes (MTL), and the anterior cingulate cortex (ACC). Among those regions, the PCC was the strongest driver and had both the highest integration and segregation importance, followed by the MTL regions. The driving role of the PCC and MTL resulted in an effective directed interaction directed from posterior toward anterior brain regions. Our results strongly suggest that the PCC and MTL structures are the main drivers of electrophysiological spontaneous activity throughout the brain and suggest that EEG-based directed functional connectivity analysis is a promising tool to better understand the dynamics of spontaneous brain activity in healthy subjects and in various brain disorders.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador
5.
Liver Transpl ; 25(2): 288-301, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30358115

RESUMO

The purpose of this study was to assess the significance of tenascin-C (Tnc) expression in steatotic liver ischemia/reperfusion injury (IRI). The critical shortage in donor organs has led to the use of steatotic livers in transplantation regardless of their elevated susceptibility to hepatic IRI. Tnc is an endogenous danger signal extracellular matrix molecule involved in various aspects of immunity and tissue injury. In the current study, mice were fed with a steatosis-inducing diet and developed approximately 50% hepatic steatosis, predominantly macrovesicular, before being subjected to hepatic IRI. We report here that lipid accumulation in hepatocytes inflated the production of Tnc in steatotic livers and in isolated hepatic stellate cells. Moreover, we show that the inability of Tnc-/- deficient steatotic mice to express Tnc significantly protected these mice from liver IRI. Compared with fatty controls, Tnc-/- steatotic mice showed significantly reduced serum transaminase levels and enhanced liver histological preservation at both 6 and 24 hours after hepatic IRI. The lack of Tnc expression resulted in impaired lymphocyte antigen 6 complex, locus (Ly6G) neutrophil and macrophage antigen-1 (Mac-1) leukocyte recruitment as well as in decreased expression of proinflammatory mediators (interleukin 1ß, tumor necrosis factor α, and chemokine [C-X-C motif] ligand 2) after liver reperfusion. Myeloperoxidase (MPO) is the most abundant cytotoxic enzyme secreted by neutrophils and a key mediator of neutrophil-induced oxidative tissue injuries. Using an in vitro model of steatosis, we also show that Tnc markedly potentiated the effect of steatotic hepatocytes on neutrophil-derived MPO activity. In conclusion, our data support the view that inhibition of Tnc is a promising therapeutic approach to lessen inflammation in steatotic livers and to maximize their successful use in organ transplantation.


Assuntos
Aloenxertos/patologia , Transplante de Fígado/efeitos adversos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Traumatismo por Reperfusão/patologia , Tenascina/metabolismo , Aloenxertos/citologia , Aloenxertos/metabolismo , Animais , Modelos Animais de Doenças , Seleção do Doador/normas , Matriz Extracelular/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/citologia , Fígado/metabolismo , Testes de Função Hepática , Transplante de Fígado/normas , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Traumatismo por Reperfusão/etiologia , Tenascina/genética
6.
Am J Pathol ; 188(8): 1820-1832, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29870740

RESUMO

Matrix metalloproteinase-9 (MMP-9) is abundantly expressed by infiltrating leukocytes and contributes to the pathogenesis of hepatic ischemia and reperfusion injury (IRI). On the other hand, its physiological inhibitor, the tissue inhibitor of metalloproteinases-1 (TIMP-1), is available in insufficient levels to hamper MMP-9 activity during hepatic IRI. In this study, we generated recombinant adeno-associated virus type 8 vectors (rAAV8) encoding mouse TIMP-1 driven by a liver-specific thyroxine-binding globulin promoter as a strategy to increase the levels of TIMP-1 during liver IRI. Biodistribution analysis confirmed selective overexpression of TIMP-1 in livers of rAAV8-TIMP-1 vector treated C57BL/6 mice. rAAV8-TIMP-1-treated mice showed reduced MMP-9 activity, diminished leukocyte trafficking and activation, lowered transaminase levels, and improved histology after liver IRI. Moreover, the rAAV8-TIMP-1 vector therapy enhanced significantly the 7-day survival rate of TIMP-1-/- mice subjected to hepatic IRI. Neutrophils are the first cells recruited to inflamed tissues and, once activated, they release nuclear DNA-forming web-like structures, known as neutrophil extracellular traps. It was found that TIMP-1 has the ability to reduce formation of neutrophil extracellular traps and, consequently, limit the impact of neutrophil extracellular trap-mediated cytotoxicity in hepatic IRI. This is the first report demonstrating that TIMP-1 overexpression is hepatoprotective in ischemia and reperfusion injury. Hence, TIMP-1 may represent a promising molecule for drug development to treat liver IRI.


Assuntos
Dependovirus/genética , Armadilhas Extracelulares , Hepatopatias/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Células Cultivadas , Leucócitos/metabolismo , Leucócitos/patologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
7.
Brain Topogr ; 31(5): 753-766, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700719

RESUMO

We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.


Assuntos
Encéfalo/fisiopatologia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Convulsões/fisiopatologia , Adulto , Algoritmos , Área Sob a Curva , Causalidade , Simulação por Computador , Eletrodos Implantados , Feminino , Humanos , Masculino , Modelos Teóricos , Razão Sinal-Ruído
8.
Epilepsia ; 57(3): 402-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26890734

RESUMO

OBJECTIVE: In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger-causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls. METHODS: Twenty LTLE, 20 RTLE, and 20 healthy controls underwent a resting-state high-density EEG recording. Source activity was obtained for 82 regions of interest (ROIs) using an individual head model and a distributed linear inverse solution. Granger-causal modeling was applied to the source signals of all ROIs. The directed functional connectivity results were compared between groups and correlated with clinical parameters (duration of the disease, age of onset, age, and learning and mood impairments). RESULTS: We found that: (1) patients had significantly reduced connectivity from regions concordant with the default-mode network; (2) there was a different network pattern in patients versus controls: the strongest connections arose from the ipsilateral hippocampus in patients and from the posterior cingulate cortex in controls; (3) longer disease duration was associated with lower driving from contralateral and ipsilateral mediolimbic regions in RTLE; (4) aging was associated with a lower driving from regions in or close to the piriform cortex only in patients; and (5) outflow from the anterior cingulate cortex was lower in patients with learning deficits or depression compared to patients without impairments and to controls. SIGNIFICANCE: Resting-state network reorganization in the absence of IEDs strengthens the view of chronic and progressive network changes in TLE. These resting-state connectivity alterations could constitute an important biomarker of TLE, and hold promise for using EEG recordings without IEDs for diagnosis or prognosis of this disorder.


Assuntos
Potenciais de Ação , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Rede Nervosa/fisiopatologia , Potenciais de Ação/fisiologia , Adolescente , Adulto , Epilepsia do Lobo Temporal/epidemiologia , Feminino , Humanos , Masculino , Transtornos da Memória/diagnóstico , Transtornos da Memória/epidemiologia , Transtornos da Memória/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
9.
Epilepsia ; 56(2): 207-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25599821

RESUMO

OBJECTIVE: There is increasing evidence that epileptic activity involves widespread brain networks rather than single sources and that these networks contribute to interictal brain dysfunction. We investigated the fast-varying behavior of epileptic networks during interictal spikes in right and left temporal lobe epilepsy (RTLE and LTLE) at a whole-brain scale using directed connectivity. METHODS: In 16 patients, 8 with LTLE and 8 with RTLE, we estimated the electrical source activity in 82 cortical regions of interest (ROIs) using high-density electroencephalography (EEG), individual head models, and a distributed linear inverse solution. A multivariate, time-varying, and frequency-resolved Granger-causal modeling (weighted Partial Directed Coherence) was applied to the source signal of all ROIs. A nonparametric statistical test assessed differences between spike and baseline epochs. Connectivity results between RTLE and LTLE were compared between RTLE and LTLE and with neuropsychological impairments. RESULTS: Ipsilateral anterior temporal structures were identified as key drivers for both groups, concordant with the epileptogenic zone estimated invasively. We observed an increase in outflow from the key driver already before the spike. There were also important temporal and extratemporal ipsilateral drivers in both conditions, and contralateral only in RTLE. A different network pattern between LTLE and RTLE was found: in RTLE there was a much more prominent ipsilateral to contralateral pattern than in LTLE. Half of the RTLE patients but none of the LTLE patients had neuropsychological deficits consistent with contralateral temporal lobe dysfunction, suggesting a relationship between connectivity changes and cognitive deficits. SIGNIFICANCE: The different patterns of time-varying connectivity in LTLE and RTLE suggest that they are not symmetrical entities, in line with our neuropsychological results. The highest outflow region was concordant with invasive validation of the epileptogenic zone. This enhanced characterization of dynamic connectivity patterns could better explain cognitive deficits and help the management of epilepsy surgery candidates.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Lateralidade Funcional/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Adulto Jovem
10.
J Hepatol ; 60(5): 1032-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24412604

RESUMO

BACKGROUND & AIMS: Organ shortage has led to the use of steatotic livers in transplantation, despite their elevated susceptibility to ischemia/reperfusion injury (IRI). Matrix metalloproteinase-9 (MMP-9), an inducible gelatinase, is emerging as a central mediator of leukocyte traffic into inflamed tissues. However, its role in steatotic hepatic IRI has yet to be demonstrated. METHODS: We examined the function of MMP-9 in mice fed with a high-fat diet (HFD), which developed approximately 50% hepatic steatosis, predominantly macrovesicular, prior to partial hepatic IRI. RESULTS: The inability of MMP-9(-/-) deficient steatotic mice to express MMP-9 significantly protected these mice from liver IRI. Compared to fatty controls, MMP-9(-/-) steatotic livers showed significantly reduced leukocyte infiltration, proinflammatory cytokine expression, and liver necrosis. Loss of MMP-9 activity preserved platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, a modulator of vascular integrity at the endothelial cell-cell junctions in steatotic livers after IRI. Using in vitro approaches, we show that targeted inhibition of MMP-9 sheltered the extracellular portion of PECAM-1 from proteolytic processing, and disrupted leukocyte migration across this junctional molecule. Moreover, the evaluation of distinct parameters of regeneration, proliferating cell nuclear antigen (PCNA) and histone H3 phosphorylation (pH3), provided evidence that hepatocyte progression into S phase and mitosis was notably enhanced in MMP-9(-/-) steatotic livers after IRI. CONCLUSIONS: MMP-9 activity disrupts vascular integrity at least partially through a PECAM-1 dependent mechanism and interferes with regeneration of steatotic livers after IRI. Our novel findings establish MMP-9 as an important mediator of steatotic liver IRI.


Assuntos
Regeneração Hepática/fisiologia , Metaloproteinase 9 da Matriz/deficiência , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Animais , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Leucócitos/patologia , Leucócitos/fisiologia , Fígado/patologia , Fígado/fisiopatologia , Regeneração Hepática/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Traumatismo por Reperfusão/patologia
11.
Hepatology ; 56(3): 1074-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22407827

RESUMO

UNLABELLED: Hepatic ischemia and reperfusion injury (IRI) remains an important challenge in clinical orthotopic liver transplantation (OLT). Tissue inhibitor of metalloproteinase-1 (TIMP-1) is the major endogenous regulator of matrix metalloproteinase-9 (MMP-9). In this study we investigated the functional significance of TIMP-1 expression in a well-established mouse model of partial liver IRI. Compared to wildtype mice, TIMP-1(-/-) mice showed further impaired liver function and histological preservation after IRI. Notably, TIMP-1 deficiency led to lethal liver IRI, as over 60% of the TIMP-1(-/-) mice died postreperfusion, whereas all TIMP-1(+/+) mice recovered and survived surgery. Lack of TIMP-1 expression was accompanied by markedly high levels of MMP-9 activity, which facilitates leukocyte transmigration across vascular barriers in hepatic IRI. Indeed, TIMP-1(-/-) livers were characterized by massive leukocyte infiltration and by up-regulation of proinflammatory mediators, including tumor necrosis factor alpha, interferon-gamma, and inducible nitric oxide synthase post-IRI. The inability of TIMP-1(-/-) mice to express TIMP-1 increased the levels of active caspase-3 and depressed the expression of Bcl-2 and the phosphorylation of Akt, emphasizing an important role for TIMP-1 expression on hepatocyte survival. Using independent parameters of regeneration, 5-bromodeoxyuridine incorporation, proliferating cell nuclear antigen expression, and histone H3 phosphorylation, we provide evidence that hepatocyte progression into S phase and mitosis was impaired in TIMP-1-deficient livers after IRI. Inhibition of the cell cycle progression by TIMP-1 deficiency was linked to depressed levels of cyclins-D1 and -E and to a disrupted c-Met signaling pathway, as evidenced by reduced phosphorylated c-Met expression and elevated c-Met ectodomain shedding postliver IRI. CONCLUSION: These results support a critical protective function for TIMP-1 expression on promoting survival and proliferation of liver cells and on regulating leukocyte recruitment and activation in liver IRI.


Assuntos
Isquemia/etiologia , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/etiologia , Inibidor Tecidual de Metaloproteinase-1/deficiência , Animais , Isquemia/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/mortalidade
12.
Bioelectrochemistry ; 152: 108432, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37030092

RESUMO

Adenosine-5-triphosphate (ATP) is the main energy vector in biological systems, thus its regeneration is an important issue for the application of many enzymes of interest in biocatalysis and synthetic biology. We have developed an electroenzymatic ATP regeneration system consisting in a gold electrode modified with a floating phospholipid bilayer that allows coupling the catalytic activity of two membrane-bound enzymes: NiFeSe hydrogenase from Desulfovibrio vulgaris and F1Fo-ATP synthase from Escherichia coli. Thus, H2 is used as a fuel for producing ATP. This electro-enzymatic assembly is studied as ATP regeneration system of phosphorylation reactions catalysed by kinases, such as hexokinase and NAD+-kinase for respectively producing glucose-6-phosphate and NADP+.


Assuntos
Trifosfato de Adenosina , Regeneração , Biocatálise , Fosforilação , Trifosfato de Adenosina/metabolismo , Catálise
13.
Bioelectrochemistry ; 150: 108361, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621050

RESUMO

Clean energy vectors are needed towards a fossil fuel-free society, diminishing both greenhouse effect and pollution. Electrochemical water splitting is a clean route to obtain green hydrogen, the cleanest fuel; although efficient electrocatalysts are required to avoid high overpotentials in this process. The combination of inorganic semiconductors with biocatalysts for photoelectrochemical H2 production is an alternative approach to overcome this challenge. N-type semiconductors can be coupled to a co-catalyst for H2 production in the presence of a sacrificial electron donor in solution, but the replacement of the latter with an electrode is a challenge. In this work we attach a NiFeSe-hydrogenase with high activity for H2 production with the n-type semiconductor indium sulfide, which upon visible irradiation is able to transfer its excited electrons to the enzyme. In order to enhance the transfer of the generated holes towards the electrode for their replenishment, we have explored the inclusion of a p-type material, NiO, to induce a p-n junction for H2 production in a photoelectrochemical biocatalytic system in absence of sacrificial reagents.


Assuntos
Hidrogenase , Flúor , Eletrodos , Hidrogênio
14.
Hepatology ; 54(6): 2125-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21898491

RESUMO

Hepatic ischemia/reperfusion (IRI) injury remains a major challenge in clinical orthotopic liver transplantation (OLT). Tenascin-C (Tnc) is an extracellular matrix protein (ECM) involved in various aspects of immunity and tissue injury. Using a Tnc-deficient mouse model, we present data that suggest an active role for Tnc in liver IRI. We show that Tnc-deficient mice have a reduction in liver damage and a significant improvement in liver regeneration after IRI. The inability of Tnc(-/-) mice to express Tnc significantly reduced the levels of active caspase-3/transferase-mediated dUTP nick end-labeling (TUNEL) apoptotic markers and enhanced the expression of the proliferation cell nuclear antigen (PCNA) after liver IRI. The lack of Tnc expression resulted in impaired leukocyte recruitment and decreased expressions of interleukin (IL)-1ß, IL-6, and CXCL2 after liver reperfusion. Tnc-deficient livers were characterized by altered expression patterns of vascular adhesion molecules, such as vascular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 post-IRI. Moreover, matrix metalloproteinase-9 (MMP-9) synthesis, which facilitates leukocyte transmigration across vascular barriers in liver IRI, was markedly down-regulated in the absence of Tnc. We also show that Tnc is capable of inducing MMP-9 expression in isolated neutrophils through Toll-like receptor 4. Therefore, our data suggest that Tnc is a relevant mediator of the pathogenic events underlying liver IRI. The data also support the view that studies aimed at further understanding how newly synthesized ECM molecules, such as Tnc, participate in inflammatory responses are needed to improve therapeutic approaches in liver IRI.


Assuntos
Regeneração Hepática/fisiologia , Traumatismo por Reperfusão/imunologia , Tenascina/deficiência , Animais , Caspase 3/metabolismo , Marcação In Situ das Extremidades Cortadas , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Fígado/patologia , Fígado/fisiologia , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Tenascina/imunologia , Receptor 4 Toll-Like/fisiologia , Molécula 1 de Adesão de Célula Vascular/biossíntese
15.
Curr Opin Organ Transplant ; 16(1): 34-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21150609

RESUMO

PURPOSE OF REVIEW: Hepatic ischemia reperfusion injury (IRI) linked to leukocyte recruitment and subsequent release of cytokines and free radicals remains a significant complication in organ transplantation. The aim of this review is to bring attention to advances made in our understanding of the mechanisms of leukocyte recruitment to sites of inflammatory stimulation in liver IRI. RECENT FINDINGS: Leukocyte transmigration across endothelial and extracellular matrix barriers is dependent on adhesive events, as well as on focal matrix degradation mechanisms. Whereas adhesion molecules are critical for the successful promotion of leukocyte transmigration by providing leukocyte attachment to the vascular endothelium, matrix metalloproteinases (MMPs) are important for facilitating leukocyte movement across vascular barriers. Among different MMPs, MMP-9, an inducible gelatinase expressed by leukocytes during hepatic IRI, is emerging as an important mediator of leukocyte traffic to inflamed liver. SUMMARY: It is generally accepted that the understanding of the molecular mechanisms involved in leukocyte recruitment will lead to the development of novel targeted therapeutic approaches for hepatic IRI and liver transplantation. Here, we review mechanisms of leukocyte traffic in liver IRI and the role of some of the proteins that are thought to be important for this process.


Assuntos
Endotélio Vascular/patologia , Proteínas da Matriz Extracelular/metabolismo , Leucócitos/patologia , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/patologia , Endotélio Vascular/metabolismo , Humanos , Leucócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Metaloproteinase 9 da Matriz/metabolismo , Traumatismo por Reperfusão/metabolismo
16.
Cell Death Differ ; 28(5): 1705-1719, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33288903

RESUMO

Foxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1M-KO) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1M-KO enhanced ß-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1M-KO livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and ß-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with ß-catenin under inflammatory conditions. Disruption of the Foxo1-ß-catenin axis by Foxo1 deletion enhanced ß-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1-ß-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteínas Hedgehog/metabolismo , Inflamassomos/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Camundongos , Estresse Oxidativo
17.
Am J Pathol ; 174(6): 2265-77, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19443702

RESUMO

Matrix metalloproteinase 9 (MMP-9) is a critical mediator of leukocyte migration in hepatic ischemia/reperfusion (I/R) injury. To test the relevance of inducible nitric oxide synthase (iNOS) expression on the regulation of MMP-9 activity in liver I/R injury, our experiments included both iNOS-deficient mice and mice treated with ONO-1714, a specific iNOS inhibitor. The inability of iNOS-deficient mice to generate iNOS-derived nitric oxide (NO) profoundly inhibited MMP-9 activity and depressed leukocyte migration in livers after I/R injury. While macrophages expressed both iNOS and MMP-9 in damaged wild-type livers, neutrophils expressed MMP-9 and were virtually negative for iNOS; however, exposure of isolated murine neutrophils and macrophages to exogenous NO increased MMP-9 activity in both cell types, suggesting that NO may activate MMP-9 in leukocytes by either autocrine or paracrine mechanisms. Furthermore, macrophage NO production through the induction of iNOS was capable of promoting neutrophil transmigration across fibronectin in a MMP-9-dependent manner. iNOS expression in liver I/R injury was also linked to liver apoptosis, which was reduced in the absence of MMP-9. These results suggest that MMP-9 activity induced by iNOS-derived NO may also lead to detachment of hepatocytes from the extracellular matrix and cell death, in addition to regulating leukocyte migration across extracellular matrix barriers. These data provide evidence for a novel mechanism by which MMP-9 can mediate iNOS-induced liver I/R injury.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Fígado/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Apoptose/fisiologia , Western Blotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Fígado/lesões , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/deficiência , Traumatismo por Reperfusão/metabolismo
18.
Cell Mol Immunol ; 17(12): 1245-1256, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31673056

RESUMO

Notch signaling plays important roles in the regulation of immune cell functioning during the inflammatory response. Activation of the innate immune signaling receptor NLRP3 promotes inflammation in injured tissue. However, it remains unknown whether Jagged1 (JAG1)-mediated myeloid Notch1 signaling regulates NLRP3 function in acute liver injury. Here, we report that myeloid Notch1 signaling regulates the NLRP3-driven inflammatory response in ischemia/reperfusion (IR)-induced liver injury. In a mouse model of liver IR injury, Notch1-proficient (Notch1FL/FL) mice receiving recombinant JAG1 showed a reduction in IR-induced liver injury and increased Notch intracellular domain (NICD) and heat shock transcription factor 1 (HSF1) expression, whereas myeloid-specific Notch1 knockout (Notch1M-KO) aggravated hepatocellular damage even with concomitant JAG1 treatment. Compared to JAG1-treated Notch1FL/FL controls, Notch1M-KO mice showed diminished HSF1 and Snail activity but augmented NLRP3/caspase-1 activity in ischemic liver. The disruption of HSF1 reduced Snail activation and enhanced NLRP3 activation, while the adoptive transfer of HSF1-expressing macrophages to Notch1M-KO mice augmented Snail activation and mitigated IR-triggered liver inflammation. Moreover, the knockdown of Snail in JAG1-treated Notch1FL/FL livers worsened hepatocellular functioning, reduced TRX1 expression and increased TXNIP/NLRP3 expression. Ablation of myeloid Notch1 or Snail increased ASK1 activation and hepatocellular apoptosis, whereas the activation of Snail increased TRX1 expression and reduced TXNIP, NLRP3/caspase-1, and ROS production. Our findings demonstrated that JAG1-mediated myeloid Notch1 signaling promotes HSF1 and Snail activation, which in turn inhibits NLRP3 function and hepatocellular apoptosis leading to the alleviation of IR-induced liver injury. Hence, the Notch1/HSF1/Snail signaling axis represents a novel regulator of and a potential therapeutic target for liver inflammatory injury.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Inflamassomos/metabolismo , Inflamação/patologia , Proteína Jagged-1/metabolismo , Fígado/lesões , Células Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Notch1/metabolismo , Animais , Apoptose , Proteínas de Transporte/metabolismo , Imunidade , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout , Modelos Biológicos , Necrose , Neutrófilos/metabolismo , Neutrófilos/patologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Tiorredoxinas/metabolismo
19.
Epilepsy Res ; 159: 106245, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846783

RESUMO

BACKGROUND: Electric Source Imaging (ESI) of interictal epileptiform discharges (IED) is increasingly validated for localizing epileptic activity. In children, IED can be absent or multifocal even in cases of a focal epileptogenic zone and additional electrophysiological markers are needed. Here, we investigated ESI of pathological focal slowing (FS) recorded on EEG as a new localizing marker in children with drug-resistant epilepsy. METHODS: We selected 15 children (median: 12; range: 4-18yrs), with high-density EEG (hdEEG), presurgical evaluation and surgical resection. One patient had a non-lesional MRI. ESI of patient-specific focal slow activity was performed (distributed linear inverse solution and individual head model). The maximal average power in the band of interest was considered as the source of focal slowing (ESI-FS). The Euclidian distance between ESI-FS and the resection (5 mm margin) was compared to the localization of maximal ESI of interictal epileptiform discharges (ESI-IED), interictal FDG-PET and ictal SPECT/SISCOM. RESULTS: In 9/15 patients (60%), ESI of focal slowing (ESI-FS) was inside or ≤5 mm from resection margins. The remaining 6/15 cases had distances ≤15 mm. In 9/15 patients with interictal spikes, the ESI-IED was concordant with the resection. 6/15 patients with concordant ESI-FS showed also interictal concordant ESI of IED; in 3/15 patients, ESI-FS but not ESI-IED was concordant with the resection. In 10/15 patients, ESI-FS was concordant with MRI lesion and for ESI-IED this concordance was on 8/15 patients. Maximal hypometabolism and SISCOM were concordant with the resection for 7/15 and 7/12, respectively. CONCLUSION: These findings suggest that "non-epileptiform" EEG activity, such as focal slowing, could be a complementary useful marker to localize the epileptogenic zone. ESI-FS may notably be applied in young patients without focal interictal spikes or multifocal spikes. This potential new marker of brain dysfunction has potential applications to other neurological disorders associated with slow EEG activity.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Masculino , Tomografia Computadorizada de Emissão de Fóton Único
20.
Hepatology ; 47(1): 186-98, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17880014

RESUMO

UNLABELLED: Leukocyte transmigration across endothelial and extracellular matrix protein barriers is dependent on adhesion and focal matrix degradation events. In the present study we investigated the role of metalloproteinase-9 (MMP-9/gelatinase B) in liver ischemia/reperfusion (I/R) injury using MMP-9-deficient (MMP-9(-/-)) animals and mice treated with a specific anti-MMP-9 neutralizing antibody or with a broad gelatinase inhibitor for both MMP-9 and metalloproteinase-2 (MMP-2/gelatinase A). Compared to wild-type mice, MMP-9(-/-) mice and mice treated with an anti-MMP-9 antibody showed significantly reduced liver damage. In contrast, mice treated with a broad gelatinase inhibitor showed rather inferior protection against I/R injury and were characterized by persistent ongoing liver inflammation, suggesting that MMP-2 and MMP-9 may have distinct roles in this type of injury. MMP-9 was mostly detected in Ly-6G and macrophage antigen-1 leukocytes adherent to the vessel walls and infiltrating the damaged livers of wild-type mice after liver I/R injury. Leukocyte traffic and cytokine expression were markedly impaired in livers of MMP-9(-/-) animals and in livers of mice treated with anti-MMP-9 antibody after I/R injury; however, initiation of the endothelial adhesion cascades was similar in both MMP-9(-/-) and control livers. We also showed that MMP-9-specific inhibition disrupted neutrophil migration across fibronectin in transwell filters and depressed myeloperoxidase (MPO) activation in vitro. CONCLUSION: These results support critical functions for MMP-9 in leukocyte recruitment and activation leading to liver damage. Moreover, they provide the rationale for identifying inhibitors to specifically target MMP-9 in vivo as a potential therapeutic approach in liver I/R injury.


Assuntos
Hepatopatias/enzimologia , Metaloproteinase 9 da Matriz/deficiência , Inibidores de Metaloproteinases de Matriz , Traumatismo por Reperfusão/enzimologia , Animais , Anticorpos/uso terapêutico , Movimento Celular/fisiologia , Inibidores Enzimáticos/uso terapêutico , Fibronectinas/fisiologia , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/fisiologia , Hepatopatias/imunologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Masculino , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Knockout , Neutrófilos/fisiologia , Peroxidase/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/metabolismo , Isquemia Quente/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA