Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 158(4): 764-777, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126784

RESUMO

DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , MicroRNAs/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Animais , Linhagem Celular Tumoral , RNA Helicases DEAD-box/imunologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Humanos , Imunidade Inata , Sequências Repetidas Invertidas , RNA Viral/química , Replicação Viral
2.
Ophthalmology ; 128(9): 1300-1311, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33713785

RESUMO

PURPOSE: MYOC (myocilin) mutations account for 3% to 5% of primary open-angle glaucoma (POAG) cases. We aimed to understand the true population-wide penetrance and characteristics of glaucoma among individuals with the most common MYOC variant (p.Gln368Ter) and the impact of a POAG polygenic risk score (PRS) in this population. DESIGN: Cross-sectional population-based study. PARTICIPANTS: Individuals with the p.Gln368Ter variant among 77 959 UK Biobank participants with fundus photographs (FPs). METHODS: A genome-wide POAG PRS was computed, and 2 masked graders reviewed FPs for disc-defined glaucoma (DDG). MAIN OUTCOME MEASURES: Penetrance of glaucoma. RESULTS: Two hundred individuals carried the p.Gln368Ter heterozygous genotype, and 177 had gradable FPs. One hundred thirty-two showed no evidence of glaucoma, 45 (25.4%) had probable/definite glaucoma in at least 1 eye, and 19 (10.7%) had bilateral glaucoma. No differences were found in age, race/ethnicity, or gender among groups (P > 0.05). Of those with DDG, 31% self-reported or had International Classification of Diseases codes for glaucoma, whereas 69% were undiagnosed. Those with DDG had higher medication-adjusted cornea-corrected intraocular pressure (IOPcc) (P < 0.001) vs. those without glaucoma. This difference in IOPcc was larger in those with DDG with a prior glaucoma diagnosis versus those not diagnosed (P < 0.001). Most p.Gln368Ter carriers showed IOP in the normal range (≤21 mmHg), although this proportion was lower in those with DDG (P < 0.02) and those with prior glaucoma diagnosis (P < 0.03). Prevalence of DDG increased with each decile of POAG PRS. Individuals with DDG demonstrated significantly higher PRS compared with those without glaucoma (0.37 ± 0.97 vs. 0.01 ± 0.90; P = 0.03). Of those with DDG, individuals with a prior diagnosis of glaucoma had higher PRS compared with undiagnosed individuals (1.31 ± 0.64 vs. 0.00 ± 0.81; P < 0.001) and 27.5 times (95% confidence interval, 2.5-306.6) adjusted odds of being in the top decile of PRS for POAG. CONCLUSIONS: One in 4 individuals with the MYOC p.Gln368Ter mutation demonstrated evidence of glaucoma, a substantially higher penetrance than previously estimated, with 69% of cases undetected. A large portion of p.Gln368Ter carriers, including those with DDG, have IOP in the normal range, despite similar age. Polygenic risk score increases disease penetrance and severity, supporting the usefulness of PRS in risk stratification among MYOC p.Gln368Ter carriers.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glicoproteínas/genética , Herança Multifatorial/genética , Mutação , Adulto , Idoso , Bancos de Espécimes Biológicos , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Penetrância , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica , Reino Unido
3.
PLoS Comput Biol ; 14(3): e1005994, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29596416

RESUMO

Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.


Assuntos
Computação em Nuvem , Biologia Computacional/métodos , Segurança Computacional , Humanos , Fluxo de Trabalho
4.
RNA ; 21(12): 2053-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437669

RESUMO

HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA expression remains lacking. Here we use next-generation sequencing to identify transcriptome changes upon depletion of hnRNP L in a model T-cell line. We demonstrate that hnRNP L primarily regulates cassette-type alternative splicing, with minimal impact of hnRNP L depletion on transcript abundance, intron retention, or other modes of alternative splicing. Strikingly, we find that binding of hnRNP L within or flanking an exon largely correlates with exon repression by hnRNP L. In contrast, exons that are enhanced by hnRNP L generally lack proximal hnRNP L binding. Notably, these hnRNP L-enhanced exons share sequence and context features that correlate with poor nucleosome positioning, suggesting that hnRNP may enhance inclusion of a subset of exons via a cotranscriptional or epigenetic mechanism. Our data demonstrate that hnRNP L controls inclusion of a broad spectrum of alternative cassette exons in T cells and suggest both direct RNA regulation as well as indirect mechanisms sensitive to the epigenetic landscape.


Assuntos
Epigênese Genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/fisiologia , Processamento Alternativo , Éxons , Humanos , Células Jurkat , Nucleossomos/metabolismo , RNA Mensageiro/genética , Transcriptoma
5.
RNA Biol ; 13(6): 569-81, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27096301

RESUMO

CELF2 is an RNA binding protein that has been implicated in developmental and signal-dependent splicing in the heart, brain and T cells. In the heart, CELF2 expression decreases during development, while in T cells CELF2 expression increases both during development and in response to antigen-induced signaling events. Although hundreds of CELF2-responsive splicing events have been identified in both heart and T cells, the way in which CELF2 functions has not been broadly investigated. Here we use CLIP-Seq to identified physical targets of CELF2 in a cultured human T cell line. By comparing the results with known functional targets of CELF2 splicing regulation from the same cell line we demonstrate a generalizable position-dependence of CELF2 activity that is consistent with previous mechanistic studies of individual CELF2 target genes in heart and brain. Strikingly, this general position-dependence is sufficient to explain the bi-directional activity of CELF2 on 2 T cell targets recently reported. Therefore, we propose that the location of CELF2 binding around an exon is a primary predictor of CELF2 function in a broad range of cellular contexts.


Assuntos
Proteínas CELF/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Linfócitos T/metabolismo , Processamento Alternativo , Encéfalo/metabolismo , Células Cultivadas , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células Jurkat , Miocárdio/metabolismo , Splicing de RNA , Transdução de Sinais
6.
RNA ; 18(5): 1029-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22454538

RESUMO

The formation and execution of a productive immune response requires the maturation of competent T cells and a robust change in cellular activity upon antigen challenge. Such changes in cellular function depend on regulated alterations to protein expression. Previous research has focused on defining transcriptional changes that regulate protein expression during T-cell maturation and antigen stimulation. Here, we globally analyze another critical process in gene regulation during T-cell stimulation, alternative splicing. Specifically, we use RNA-seq profiling to identify 178 exons in 168 genes that exhibit robust changes in inclusion in response to stimulation of a human T-cell line. Supporting an important role for the global coordination of alternative splicing following T-cell stimulation, these signal-responsive exons are significantly enriched in genes with functional annotations specifically related to immune response. The vast majority of these genes also exhibit differential alternative splicing between naive and activated primary T cells. Comparison of the responsiveness of splicing to various stimuli in the cultured and primary T cells further reveals at least three distinct networks of signal-induced alternative splicing events. Importantly, we find that each regulatory network is specifically associated with distinct sequence features, suggesting that they are controlled by independent regulatory mechanisms. These results thus provide a basis for elucidating mechanisms of signal pathway-specific regulation of alternative splicing during T-cell stimulation.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Transdução de Sinais , Linfócitos T/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Éxons , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Motivos de Nucleotídeos , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de RNA , Linfócitos T/imunologia
7.
Invest Ophthalmol Vis Sci ; 62(2): 28, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33605984

RESUMO

Purpose: POAG is the leading cause of irreversible blindness in African Americans. In this study, we quantitatively assess the association of autosomal ancestry with POAG risk in a large cohort of self-identified African Americans. Methods: Subjects recruited to the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study were classified as glaucoma cases or controls by fellowship-trained glaucoma specialists. POAAGG subjects were genotyped using the MEGA Ex array (discovery cohort, n = 3830; replication cohort, n = 2135). Population structure was interrogated using principal component analysis in the context of the 1000 Genomes Project superpopulations. Results: The majority of POAAGG samples lie on an axis between African and European superpopulations, with great variation in admixture. Cases had a significantly lower mean value of the ancestral component q0 than controls for both cohorts (P = 6.14-4; P = 3-6), consistent with higher degree of African ancestry. Among POAG cases, higher African ancestry was also associated with thinner central corneal thickness (P = 2-4). Admixture mapping showed that local genetic ancestry was not a significant risk factor for POAG. A polygenic risk score, comprised of 23 glaucoma-associated single nucleotide polymorphisms from the NHGRI-EBI genome-wide association study catalog, was significant in both cohorts (P < 0.001), suggesting that both known POAG single nucleotide polymorphisms and an omnigenic ancestry effect influence POAG risk. Conclusions: In sum, the POAAGG study population is very admixed, with a higher degree of African ancestry associated with an increased POAG risk. Further analyses should consider social and environmental factors as possible confounding factors for disease predisposition.


Assuntos
Negro ou Afro-Americano/genética , Glaucoma de Ângulo Aberto/genética , Pressão Intraocular/fisiologia , Polimorfismo de Nucleotídeo Único , Vigilância da População , Acuidade Visual , Adulto , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Glaucoma de Ângulo Aberto/etnologia , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Incidência , Masculino , Fatores de Risco , Estados Unidos/epidemiologia
8.
Curr Protoc Hum Genet ; 95: 1.14.1-1.14.10, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044470

RESUMO

The goal of this unit is to introduce epistasis, or gene-gene interactions, as a significant contributor to the genetic architecture of complex traits, including disease susceptibility. This unit begins with an historical overview of the concept of epistasis and the challenges inherent in the identification of potential gene-gene interactions. Then, it reviews statistical and machine learning methods for discovering epistasis in the context of genetic studies of quantitative and categorical traits. This unit concludes with a discussion of meta-analysis, replication, and other topics of active research. © 2017 by John Wiley & Sons, Inc.


Assuntos
Epistasia Genética , Regulação da Expressão Gênica , Genômica , Algoritmos , Animais , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genômica/métodos , Humanos , Aprendizado de Máquina , Modelos Estatísticos
9.
Mol Cell Biol ; 34(1): 71-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24164894

RESUMO

The RNA processing factor hnRNP L is required for T cell development and function. However, the spectrum of direct targets of hnRNP L activity in T cells has yet to be defined. In this study, we used cross-linking and immunoprecipitation followed by high-throughput sequencing (CLIP-seq) to identify the RNA binding sites of hnRNP L within the transcriptomes of human CD4(+) and cultured Jurkat T cells. We find that hnRNP L binds preferentially to transcripts encoding proteins involved in RNA processing and in Wnt and T cell receptor (TCR) signaling. This binding is largely conserved across both quiescent and activated T cells, in agreement with the critical role of hnRNP L throughout T cell biology. Importantly, based on the binding profile of hnRNP L, we validate numerous instances of hnRNP L-dependent alternative splicing of genes critical to T cell function. We further show that alternative exons with weak 5' splice site sequences specifically show a strong correlation between hnRNP L binding and hnRNP L-dependent splicing regulation. Together, these data provide the first transcriptome-wide analysis of the RNA targets of hnRNP L in lymphoid cells and add to the functional understanding of hnRNP L in human biology.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , RNA/metabolismo , Linfócitos T/metabolismo , Transcriptoma , Processamento Alternativo , Sequência de Bases , Sítios de Ligação/genética , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , RNA/genética , Sítios de Splice de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Genetics ; 186(1): 147-57, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20610412

RESUMO

Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these processes is critical. The avascular and transparent cornea serves as a good in vivo model to study the pathogenesis of cell hyperproliferation, inflammation, and angiogenesis. Corneal disease 1 (Dstn(corn1)) mice are homozygous for a spontaneous null allele of the destrin (Dstn) gene, which is also known as actin depolymerizing factor (ADF). These mice exhibit abnormalities in the cornea including epithelial cell hyperproliferation, stromal inflammation, and neovascularization. We previously identified that the transcription factor, serum response factor (SRF) and a number of its target genes are upregulated in the cornea of these mice. In this study, we show that conditional ablation of Srf in the corneal epithelium of a diseased Dstn(corn1) cornea results in the rescue of the epithelial cell hyperproliferation, inflammation, and neovascularization phenotypes, delineating an epithelial cell-specific role for SRF in the development of all of these abnormalities. Our study also demonstrates that Dstn is genetically upstream of Srf and defines a new functional role for SRF as the master regulator of a hyperproliferative, inflammatory phenotype accompanied by neovascularization.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Fator de Resposta Sérica/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Destrina/genética , Destrina/metabolismo , Doxiciclina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fenótipo , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética
11.
Genetics ; 186(4): 1337-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20876567

RESUMO

X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among family members with the same mutation. This variation suggests the existence of genetic modifiers that may contribute to disease severity. Previously, we reported the identification of a modifier locus, named Mor1, which affects severity of schisis in a mouse model of XLRS (the Rs1tmgc1 mouse). Homozygosity for the protective AKR allele of Mor1 restores cell adhesion in Rs1tmgc1 mice. Here, we report our study to identify the Mor1 gene. Through collecting recombinant mice followed by progeny testing, we have localized Mor1 to a 4.4-Mb region on chromosome 7. In this genetic region, the AKR strain is known to carry a mutation in the tyrosinase (Tyr) gene. We observed that the schisis phenotype caused by the Rs1 mutation is rescued by a Tyr mutation in the C57BL/6J genetic background, strongly suggesting that Tyr is the Mor1 gene.


Assuntos
Monofenol Mono-Oxigenase/fisiologia , Retinosquise/enzimologia , Animais , Adesão Celular , Mapeamento Cromossômico , Cromossomos , Proteínas do Olho/genética , Homozigoto , Camundongos , Monofenol Mono-Oxigenase/genética , Mutação , Retinosquise/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA