RESUMO
Shelterin, the telomeric protein complex, plays a crucial role in telomere homeostasis. In fission yeast, telomerase is recruited to chromosome ends by the shelterin component Tpz1 and its binding partner Ccq1, where telomerase binds to the 3' overhang to add telomeric repeats. Recruitment is initiated by the interaction of Ccq1 with the telomerase subunit Est1. However, how telomerase is released following elongation remains to be established. Here, we show that Ccq1 also has a role in the suppression of telomere elongation, when coupled with the Clr4 histone H3 methyl-transferase complex and the Clr3 histone deacetylase and nucleosome remodelling complex, SHREC. We have dissected the functions of Ccq1 by establishing a Ccq1-Est1 fusion system, which bypasses the telomerase recruitment step. We demonstrate that Ccq1 forms two distinct complexes for positive and negative telomerase regulation, with Est1 and Clr3 respectively. The negative form of Ccq1 promotes dissociation of Ccq1-telomerase from Tpz1, thereby restricting local telomerase activity. The Clr4 complex also has a negative regulation activity with Ccq1, independently of SHREC. Thus, we propose a model in which Ccq1-Est1 recruits telomerase to mediate telomere extension, whilst elongated telomeric DNA recruits Ccq1 with the chromatin-remodelling complexes, which in turn releases telomerase from the telomere.
Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Telomerase/química , Telomerase/genéticaRESUMO
A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.
Assuntos
Anemia Aplástica/complicações , Anemia Aplástica/genética , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/genética , Proteínas de Choque Térmico HSP40/genética , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/genética , Mutação/genética , Neoplasias/complicações , Neoplasias/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/patologia , Sequência de Aminoácidos , Transtornos da Insuficiência da Medula Óssea , Proliferação de Células , Forma Celular , Criança , Pré-Escolar , Feminino , Proteínas de Choque Térmico HSP40/química , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/genética , Masculino , Ligação Proteica , RNA Ribossômico/biossínteseRESUMO
Dyskeratosis congenita (DC) and related diseases are a heterogeneous group of disorders characterized by impaired telomere maintenance, known collectively as the telomeropathies. Disease-causing variants have been identified in 10 telomere-related genes including the reverse transcriptase (TERT) and the RNA component (TERC) of the telomerase complex. Variants in TERC and TERT can impede telomere elongation causing stem cells to enter premature replicative senescence and/or apoptosis as telomeres become critically short. This explains the major impact of the disease on highly proliferative tissues such as the bone marrow and skin. However, telomerase variants are not always fully penetrant and in some families disease-causing variants are seen in asymptomatic family members. As a result, determining the pathogenic status of newly identified variants in TERC or TERT can be quite challenging. Over a 3-year period, we have identified 26 telomerase variants (16 of which are novel) in 23 families. Additional investigations (including family segregation and functional studies) enabled these to be categorized into 3 groups: (1) disease-causing (n = 15), (2) uncertain status (n = 6), and (3) bystanders (n = 5). Remarkably, this process has also enabled us to identify families with novel mechanisms of inheriting human telomeropathies. These include triallelic mutations, involving 2 different telomerase genes, and an epigenetic-like inheritance of short telomeres in the absence of a telomerase mutation. This study therefore highlights that telomerase variants have highly variable functional and clinical manifestations and require thorough investigation to assess their pathogenic contribution.
Assuntos
Disceratose Congênita/genética , Epigênese Genética , Telomerase/genética , Alelos , Sequência de Bases , Células Cultivadas , Estudos de Coortes , Família , Humanos , Padrões de Herança , Dados de Sequência Molecular , Mutação , Linhagem , RNA/genéticaRESUMO
BACKGROUND: Fission yeast is one of the most commonly used model organisms for studying genetics. For selection of desirable genotypes, antibiotic resistance cassettes are widely integrated into the genome near genes of interest. In yeasts, this is achieved by PCR amplification of the cassette flanked by short homology sequences, which can be incorporated by homology directed repair. However, the currently available cassettes all share the same tef promoter and terminator sequences. It can therefore be challenging to perform multiple genetic modifications by PCR-based targeting, as existing resistance cassettes in strains can be favored for recombination due to shared homology between the cassettes. RESULTS: Here we have generated new selection cassettes that do not recombine with those traditionally used. We achieved this by swapping the tef promoter and terminator sequences in the established antibiotic resistance MX6 cassette series for alternative promoters and/or terminators. The newly created selection cassettes did not recombine with the tef-containing MX6 cassettes already present in the genome, allowing for sequential gene targeting using the PCR-based method. In addition, we have generated a series of plasmids to facilitate the C-terminal tagging of genes with desired epitopes. We also utilized the anti-selection gene HSV-TK, which results in cell death in strains grown on the drug 5-Fluoro-2'-deoxyuridine (FdU, Floxuridin or FUDR). By fusing an antibiotic resistance gene to HSV-TK, we were able to select on the relevant antibiotic as well as counter-select on FdU media to confirm the desired genomic modification had been made. We noted that the efficiency of the counter selection by FdU was enhanced by treatment with hydroxyurea. However, a number of DNA replication checkpoint and homologous recombination mutants, including rad3∆, cds1∆, rad54∆ and rad55∆, exhibited sensitivity to FdU even though those strains did not carry the HSV-TK gene. To remove counter-selectable markers, we introduced the Cre-loxP irreversible recombination method. Finally, utilizing the negative selectable markers, we showed efficient induction of point mutations in an endogenous gene by a two-step transformation method. CONCLUSIONS: The plasmid constructs and techniques described here are invaluable tools for sequential gene targeting and will simplify construction of fission yeast strains required for study.
Assuntos
DNA Fúngico/genética , Farmacorresistência Fúngica/genética , Marcação de Genes/métodos , Mutagênese Insercional/métodos , Regiões Promotoras Genéticas/genética , Schizosaccharomyces/genética , Mutação Puntual/genéticaRESUMO
Dyskeratosis congenita is a highly pleotropic genetic disorder. This heterogeneity can lead to difficulties in making an accurate diagnosis and delays in appropriate management. The aim of this study was to determine the underlying genetic basis in patients presenting with features of dyskeratosis congenita and who were negative for mutations in the classical dyskeratosis congenita genes. By whole exome and targeted sequencing, we identified biallelic variants in genes that are not associated with dyskeratosis congenita in 17 individuals from 12 families. Specifically, these were homozygous variants in USB1 (8 families), homozygous missense variants in GRHL2 (2 families) and identical compound heterozygous variants in LIG4 (2 families). All patients had multiple somatic features of dyskeratosis congenita but not the characteristic short telomeres. Our case series shows that biallelic variants in USB1, LIG4 and GRHL2, the genes mutated in poikiloderma with neutropenia, LIG4/Dubowitz syndrome and the recently recognized ectodermal dysplasia/short stature syndrome, respectively, cause features that overlap with dyskeratosis congenita. Strikingly, these genes also overlap in their biological function with the known dyskeratosis congenita genes that are implicated in telomere maintenance and DNA repair pathways. Collectively, these observations demonstrate the marked overlap of dyskeratosis congenita with four other genetic syndromes, confounding accurate diagnosis and subsequent management. This has important implications for establishing a genetic diagnosis when a new patient presents in the clinic. Patients with clinical features of dyskeratosis congenita need to have genetic analysis of USB1, LIG4 and GRHL2 in addition to the classical dyskeratosis congenita genes and telomere length measurements.
Assuntos
Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Exoma/genética , Variação Genética/genética , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a DNA/genética , Humanos , Linhagem , Diester Fosfórico Hidrolases/genética , Análise de Sequência de DNA , Síndrome , Fatores de Transcrição/genéticaAssuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Disceratose Congênita/genética , Mutação Puntual , Serina Proteases/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros , Adulto , Aminopeptidases/química , Criança , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Conformação Proteica , Serina Proteases/química , Complexo Shelterina/genética , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/genéticaAssuntos
DNA Ligase Dependente de ATP/deficiência , Síndromes de Imunodeficiência/genética , Criança , Pré-Escolar , DNA Ligase Dependente de ATP/genética , Diagnóstico Diferencial , Feminino , Genótipo , Humanos , Síndromes de Imunodeficiência/diagnóstico , Lactente , Recém-Nascido , Masculino , MutaçãoRESUMO
To avoid replicative senescence or telomere-induced apoptosis, cancers employ telomere maintenance mechanisms (TMMs) involving either the upregulation of telomerase or the acquisition of recombination-based alternative telomere lengthening (ALT). The choice of TMM may differentially influence cancer evolution and be exploitable in targeted therapies. Here, we examine TMMs in a panel of 17 osteosarcoma-derived cell lines, defining three separate groups according to TMM and the length of telomeres maintained. Eight were ALT-positive, including the previously uncharacterized lines, KPD and LM7. While ALT-positive lines all showed excessive telomere length, ALT-negative cell lines fell into two groups according to their telomere length: HOS-MNNG, OHSN, SJSA-1, HAL, 143b, and HOS displayed subnormally short telomere length, while MG-63, MHM, and HuO-3N1 displayed long telomeres. Hence, we further subcategorized ALT-negative TMM into long-telomere (LT) and short-telomere (ST) maintenance groups. Importantly, subnormally short telomeres were significantly associated with hypersensitivity to three different therapeutics targeting the protein kinase ataxia telangiectasia and Rad3-related (ATR) (AZD-6738/Ceralasertib, VE-822/Berzoserib, and BAY-1895344) compared to long telomeres maintained via ALT or telomerase. Within 24 h of ATR inhibition, cells with short but not long telomeres displayed chromosome bridges and underwent cell death, indicating a selective dependency on ATR for chromosome stability. Collectively, our work provides a resource to identify links between the mode of telomere maintenance and drug sensitivity in osteosarcoma and indicates that telomere length predicts ATR inhibitor sensitivity in cancer.
Assuntos
Anemia Aplástica/complicações , Anemia Aplástica/genética , Variação Genética , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/genética , Recombinases/genética , Anemia Aplástica/diagnóstico , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hemoglobinúria Paroxística/diagnóstico , Humanos , Análise de Sequência de DNARESUMO
Understanding the intricacies of telomerase regulation is crucial due to the potential health benefits of modifying its activity. Telomerase is composed of an RNA component and reverse transcriptase. However, additional factors required during biogenesis vary between species. Here we have identified fission yeast Lar7 as a member of the conserved LARP7 family, which includes the Tetrahymena telomerase-binding protein p65 and human LARP7. We show that Lar7 has conserved RNA-recognition motifs, which bind telomerase RNA to protect it from exosomal degradation. In addition, Lar7 is required to stabilise the association of telomerase RNA with the protective complex LSm2-8, and telomerase reverse transcriptase. Lar7 remains a component of the mature telomerase complex and is required for telomerase localisation to the telomere. Collectively, we demonstrate that Lar7 is a crucial player in fission yeast telomerase biogenesis, similarly to p65 in Tetrahymena, and highlight the LARP7 family as a conserved factor in telomere maintenance.
Assuntos
Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Protozoários/genética , RNA Fúngico/genética , DNA Polimerase Dirigida por RNA/genética , RNA/genética , Ribonucleoproteínas/genética , Schizosaccharomyces/genética , Telomerase/genética , Motivos de Aminoácidos , Sequência Conservada , Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , RNA/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Telomerase/metabolismo , Telômero/química , Telômero/ultraestrutura , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismoRESUMO
During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.
RESUMO
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.