Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366124

RESUMO

Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Fibrose Cística/complicações , Pulmão/microbiologia , Genômica , Mutação
2.
J Cyst Fibros ; 23(5): 885-895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702223

RESUMO

BACKGROUND: Excessive inflammation and recurrent airway infections characterize people with cystic fibrosis (pwCF), a disease with highly heterogeneous clinical outcomes. How the overall immune response is affected in pwCF, its relationships with the lung microbiome, and the source of clinical heterogeneity have not been fully elucidated. METHODS: Peripheral blood and sputum samples were collected from 28 pwCF and an age-matched control group. Systemic immune cell subsets and surface markers were quantified using multiparameter flow cytometry. Lung microbiome composition was reconstructed using metatranscriptomics on sputum samples, and microbial taxa were correlated to circulating immune cells and surface markers expression. RESULTS: In pwCF, we found a specific systemic immune profile characterized by widespread hyperactivation and altered frequencies of several subsets. These included substantial changes in B-cell subsets, enrichment of CD35+/CD49d+ neutrophils, and reduction in dendritic cells. Activation markers and checkpoint molecule expression levels differed from healthy subjects. CTLA-4 expression was increased in Tregs and, together with impaired B-cell subsets, correlated with patients' lung function. Concentrations and frequencies of key immune cells and marker expression correlated with the relative abundance of commensal and pathogenic bacteria in the lungs. CONCLUSION: The CF-specific immune signature, involving hyperactivation, immune dysregulation with alteration in Treg homeostasis, and impaired B-cell function, is a potential source of lung function heterogeneity. The activity of specific microbes contributes to disrupting the balance of the immune response. Our data provide a unique foundation for identifying novel markers and immunomodulatory targets to develop the future of cystic fibrosis treatment and management.


Assuntos
Fibrose Cística , Microbiota , Escarro , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/imunologia , Masculino , Feminino , Escarro/microbiologia , Escarro/imunologia , Microbiota/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Adulto , Testes de Função Respiratória/métodos , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA