Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 92(2): 563-571, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34645953

RESUMO

BACKGROUND: Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkers-adiponectin, leptin, ghrelin, and orexin-and their associations with CMD risk factors. METHODS: We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat percent (BF%) and glycemic traits using structural equation modeling. RESULTS: We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci. Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels. CONCLUSIONS: The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by the biomarkers. IMPACT: This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on adiposity and insulin biology among Hispanic/Latino adolescents. Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin, with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and reveals candidates for prevention efforts. Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic architecture of metabolic biomarker levels.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Adiponectina/genética , Adolescente , Biomarcadores , Doenças Cardiovasculares/genética , Grelina/genética , Hispânico ou Latino/genética , Humanos , Insulina , Resistência à Insulina/genética , Leptina , Estudos Longitudinais , Orexinas
2.
BMC Pediatr ; 21(1): 79, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588791

RESUMO

BACKGROUND: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. METHODS: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. RESULTS: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p < 0.05). Higher PRS was associated with a lower total body BMD (ß = - 0.040 ± 0.009, p = 1.1 × 10- 5) and lumbar spine BMD (ß = - 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (ß = - 0.015 ± 0.006, p = 0.02; ß = 0.008 ± 0.01, p = 0.4, respectively). DISCUSSION: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed. CONCLUSIONS: Bone health in Hispanic children with high genetic risk for low BMD is benefitted more by MVPA than children with low genetic risk. Our results may be useful to predict disease risk and tailor dietary and physical activity advice delivery to people, especially children.


Assuntos
Densidade Óssea , Exercício Físico , Absorciometria de Fóton , Densidade Óssea/genética , Criança , Estudos Transversais , Hispânico ou Latino/genética , Humanos
3.
Genet Epidemiol ; 42(4): 378-393, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460292

RESUMO

Knowledge on genetic and environmental (G × E) interaction effects on cardiometabolic risk factors (CMRFs) in children is limited.  The purpose of this study was to examine the impact of G × E interaction effects on CMRFs in Mexican American (MA) children (n = 617, ages 6-17 years). The environments examined were sedentary activity (SA), assessed by recalls from "yesterday" (SAy) and "usually" (SAu) and physical fitness (PF) assessed by Harvard PF scores (HPFS). CMRF data included body mass index (BMI), waist circumference (WC), fat mass (FM), fasting insulin (FI), homeostasis model of assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), systolic (SBP) and diastolic (DBP) blood pressure, and number of metabolic syndrome components (MSC). We examined potential G × E interaction in the phenotypic expression of CMRFs using variance component models and likelihood-based statistical inference. Significant G × SA interactions were identified for six CMRFs: BMI, WC, FI, HOMA-IR, MSC, and HDL, and significant G × HPFS interactions were observed for four CMRFs: BMI, WC, FM, and HOMA-IR. However, after correcting for multiple hypothesis testing, only WC × SAy, FM × SAy, and FI × SAu interactions became marginally significant. After correcting for multiple testing, most of CMRFs exhibited significant G × E interactions (Reduced G × E model vs. Constrained model). These findings provide evidence that genetic factors interact with SA and PF to influence variation in CMRFs, and underscore the need for better understanding of these relationships to develop strategies and interventions to effectively reduce or prevent cardiometabolic risk in children.


Assuntos
Doenças Cardiovasculares/genética , Interação Gene-Ambiente , Síndrome Metabólica/genética , Americanos Mexicanos/genética , Aptidão Física , Comportamento Sedentário , Adolescente , Glicemia/metabolismo , Índice de Massa Corporal , Criança , Feminino , Variação Genética , Humanos , Funções Verossimilhança , Masculino , Modelos Genéticos , Herança Multifatorial/genética , Fatores de Risco , Circunferência da Cintura/genética
4.
Int J Obes (Lond) ; 42(5): 1092-1096, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463919

RESUMO

Developmental programming by reduced maternal nutrition alters function in multiple offspring physiological systems, including lipid metabolism. We have shown that intrauterine growth restriction (IUGR) leads to offspring cardiovascular dysfunction with an accelerated aging phenotype in our nonhuman primate, baboon model. We hypothesized age-advanced pericardial fat and blood lipid changes. In pregnancy and lactation, pregnant baboons ate ad lib (control) or 70% ad lib diet (IUGR). We studied baboon offspring pericardial lipid deposition with magnetic resonance imaging at 5-6 years (human equivalent 20-24 years), skinfold thickness, and serum lipid profile at 8-9 years (human equivalent 32-36 years), comparing values with a normative life-course baboon cohort, 4-23 years. Increased pericardial fat deposition occurred in IUGR males but not females. Female but not male total cholesterol, low-density lipoprotein, and subcutaneous fat were increased with a trend of triglycerides increase. When comparing IUGR changes to values in normal older baboons, the increase in male apical pericardial fat was equivalent to advancing age by 6 years and the increase in female low-density lipoprotein to an increase of 3 years. We conclude that reduced maternal diet accelerates offspring lipid changes in a sex-dimorphic manner. The interaction between programming and accelerated lipogenesis warrants further investigation.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Desnutrição/fisiopatologia , Papio/fisiologia , Gordura Subcutânea/fisiopatologia , Animais , Dieta , Feminino , Lipídeos/sangue , Masculino , Pericárdio/fisiopatologia , Caracteres Sexuais , Dobras Cutâneas
5.
FASEB J ; 31(10): 4216-4225, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28821637

RESUMO

Every institution that is involved in research with animals is expected to have in place policies and procedures for the management of allegations of noncompliance with the Animal Welfare Act and the U.S. Public Health Service Policy on the Humane Care and Use of Laboratory Animals. We present here a model set of recommendations for institutional animal care and use committees and institutional officials to ensure appropriate consideration of allegations of noncompliance with federal Animal Welfare Act regulations that carry a significant risk or specific threat to animal welfare. This guidance has 3 overarching aims: 1) protecting the welfare of research animals; 2) according fair treatment and due process to an individual accused of noncompliance; and 3) ensuring compliance with federal regulations. Through this guidance, the present work seeks to advance the cause of scientific integrity, animal welfare, and the public trust while recognizing and supporting the critical importance of animal research for the betterment of the health of both humans and animals.-Hansen, B. C., Gografe, S., Pritt, S., Jen, K.-L. C., McWhirter, C. A., Barman, S. M., Comuzzie, A., Greene, M., McNulty, J. A., Michele, D. E., Moaddab, N., Nelson, R. J., Norris, K., Uray, K. D., Banks, R., Westlund, K. N., Yates, B. J., Silverman, J., Hansen, K. D., Redman, B. Ensuring due process in the IACUC and animal welfare setting: considerations in developing noncompliance policies and procedures for institutional animal care and use committees and institutional officials.


Assuntos
Comitês de Cuidado Animal , Experimentação Animal , Bem-Estar do Animal , Animais de Laboratório , Direitos Civis , Experimentação Animal/normas , Bem-Estar do Animal/legislação & jurisprudência , Animais , DNA/metabolismo , Humanos
6.
J Med Primatol ; 47(1): 3-17, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28620920

RESUMO

BACKGROUND: The purpose of this study was to determine whether dietary manipulation can reliably induce early-stage atherosclerosis and clinically relevant changes in vascular function in an established, well-characterized non-human primate model. METHODS: We fed 112 baboons a high-cholesterol, high-fat challenge diet for two years. We assayed circulating biomarkers of cardiovascular disease (CVD) risk, at 0, 7, and 104 weeks into the challenge; assessed arterial compliance noninvasively at 104 weeks; and measured atherosclerotic lesions in three major arteries at necropsy. RESULTS: We observed evidence of atherosclerosis in all but one baboon fed the two-year challenge diet. CVD risk biomarkers, the prevalence, size, and complexity of arterial lesions, plus consequent arterial stiffness, were increased in comparison with dietary control animals. CONCLUSIONS: Feeding baboons a high-cholesterol, high-fat diet for two years reliably induces atherosclerosis, with risk factor profiles, arterial lesions, and changes in vascular function also seen in humans.


Assuntos
Aterosclerose/etiologia , Dieta Aterogênica/efeitos adversos , Modelos Animais de Doenças , Papio anubis , Papio cynocephalus , Animais , Artérias/fisiologia , Artérias/fisiopatologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Feminino , Lipoproteínas/metabolismo , Masculino
7.
Hum Mol Genet ; 24(18): 5330-44, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26101197

RESUMO

Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic basis of such diseases is accounted for by DNA methylation is unknown. In the setting of large, extended families representing a minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2 diabetes (T2D). Using Illumina HumanMethylation450 BeadChip arrays, we tested for association of DNA methylation at 446 356 sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical analyses showed that (i) 15% of the methylome is significantly heritable, with a median heritability of 0.14; (ii) DNA methylation at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin resistance; (v) DNA methylation levels at five CpG sites, mapping to three well-characterized genes (TXNIP, ABCG1 and SAMD12) independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Americanos Mexicanos/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Mapeamento Cromossômico , Ilhas de CpG , Metilação de DNA , Diabetes Mellitus Tipo 2/epidemiologia , Epigenômica , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança , Resistência à Insulina/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Fatores de Risco , Fatores Sexuais , Texas/epidemiologia , Texas/etnologia , Adulto Jovem
8.
IUBMB Life ; 69(9): 745-755, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28762248

RESUMO

Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD gene therapy, engineered a BAT phenotype with UCP-1 over-expression. © 2017 IUBMB Life, 69(9):745-755, 2017.


Assuntos
Reprogramação Celular/genética , Diabetes Mellitus Experimental/terapia , Técnicas de Transferência de Genes , Terapia Genética , Obesidade/terapia , Tecido Adiposo Marrom/metabolismo , Animais , Proteína Morfogenética Óssea 7/genética , Diferenciação Celular/genética , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Humanos , Microbolhas/uso terapêutico , Músculo Esquelético/metabolismo , Músculo Esquelético/transplante , Obesidade/genética , Obesidade/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Plasmídeos/genética , Plasmídeos/uso terapêutico , Ratos , Ratos Zucker , Fatores de Transcrição/genética
9.
BMC Med Genet ; 18(1): 6, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095793

RESUMO

BACKGROUND: Reduced renal excretion of uric acid plays a significant role in the development of hyperuricemia and gout in adults. Hyperuricemia has been associated with chronic kidney disease and cardiovascular disease in children and adults. There are limited genome-wide association studies associating genetic polymorphisms with renal urate excretion measures. Therefore, we investigated the genetic factors that influence the excretion of uric acid and related indices in 768 Hispanic children of the Viva La Familia Study. METHODS: We performed a genome-wide association analysis for 24-h urinary excretion measures such as urinary uric acid/urinary creatinine ratio, uric acid clearance, fractional excretion of uric acid, and glomerular load of uric acid in SOLAR, while accounting for non-independence among family members. RESULTS: All renal urate excretion measures were significantly heritable (p <2 × 10-6) and ranged from 0.41 to 0.74. Empirical threshold for genome-wide significance was set at p <1 × 10-7. We observed a strong association (p < 8 × 10-8) of uric acid clearance with a single nucleotide polymorphism (SNP) in zinc finger protein 446 (ZNF446) (rs2033711 (A/G), MAF: 0.30). The minor allele (G) was associated with increased uric acid clearance. Also, we found suggestive associations of uric acid clearance with SNPs in ZNF324, ZNF584, and ZNF132 (in a 72 kb region of 19q13; p <1 × 10-6, MAFs: 0.28-0.31). CONCLUSION: For the first time, we showed the importance of 19q13 region in the regulation of renal urate excretion in Hispanic children. Our findings indicate differences in inherent genetic architecture and shared environmental risk factors between our cohort and other pediatric and adult populations.


Assuntos
Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Ácido Úrico/metabolismo , Adolescente , Biomarcadores/urina , Criança , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino
10.
BMC Genet ; 18(1): 48, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28525987

RESUMO

BACKGROUND: Differential plasma concentrations of circulating lipid species are associated with pathogenesis of type 2 diabetes (T2D). Whether the wide inter-individual variability in the plasma lipidome contributes to the genetic basis of T2D is unknown. Here, we investigated the potential overlap in the genetic basis of the plasma lipidome and T2D-related traits. RESULTS: We used plasma lipidomic data (1202 pedigreed individuals, 319 lipid species representing 23 lipid classes) from San Antonio Family Heart Study in Mexican Americans. Bivariate trait analyses were used to estimate the genetic and environmental correlation of all lipid species with three T2D-related traits: risk of T2D, presence of prediabetes and homeostatic model of assessment - insulin resistance. We found that 44 lipid species were significantly genetically correlated with one or more of the three T2D-related traits. Majority of these lipid species belonged to the diacylglycerol (DAG, 17 species) and triacylglycerol (TAG, 17 species) classes. Six lipid species (all belonging to the triacylglycerol class and containing palmitate at the first position) were significantly genetically correlated with all the T2D-related traits. CONCLUSIONS: Our results imply that: a) not all plasma lipid species are genetically informative for T2D pathogenesis; b) the DAG and TAG lipid classes partially share genetic basis of T2D; and c) 1-palmitate containing TAGs may provide additional insights into the genetic basis of T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Lipídeos/sangue , Americanos Mexicanos/genética , Estado Pré-Diabético/genética , Característica Quantitativa Herdável , Adulto , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Feminino , Interação Gene-Ambiente , Humanos , Resistência à Insulina/etnologia , Masculino , Estado Pré-Diabético/sangue , Estado Pré-Diabético/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA