Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 184: 771-780, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292814

RESUMO

A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Neuroglia/metabolismo , Sódio/metabolismo , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Desempenho Psicomotor , Isótopos de Sódio , Adulto Jovem
2.
Radiology ; 292(2): 422-428, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31184559

RESUMO

Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects the upper and lower motor neurons. Recent sodium (23Na) MRI studies have shown that abnormal sodium concentration is related to neuronal suffering in neurodegenerative conditions. Purpose To use 23Na MRI to investigate abnormal sodium concentrations and map their distribution in the brains of study participants with ALS as compared with healthy control subjects. Materials and Methods Twenty-seven participants with ALS (mean age, 54 years ± 10 [standard deviation], eight women) and 30 healthy control subjects (mean age, 50 years ± 10; 16 women) were prospectively recruited between September 2015 and October 2017 and were examined by using conventional proton MRI and sodium MRI at 3 T. Voxel-based statistical mapping was used to compare quantitative whole-brain total sodium concentration (TSC) maps in participants with ALS with those in control subjects and to localize regions of abnormal elevated TSC. Potential overlap of abnormal elevated TSC with regions of atrophy as detected with 1H MRI also was investigated. Results Voxel-based statistical mapping analyses revealed higher sodium concentration in motor regions (bilateral precentral gyri, corticospinal tracts, and the corpus callosum) of participants with ALS (two-sample t test, P < .005; age and sex as covariates). In these regions, mean TSC was higher in participants with ALS (mean, 45.6 mmol/L wet tissue ± 3.2) than in control subjects (mean, 41.8 mmol/L wet tissue ± 2.7; P < .001; Cohen d = 1.28). Brain regions showing higher TSC represented a volume of 15.4 cm3 that did not overlap with gray matter atrophy occupying a volume of 16.9 cm3. Elevated TSC correlated moderately with corticospinal conduction failure assessed with transcranial magnetic stimulation in the right upper limb (Spearman ρ = -0.57; 95% confidence interval: -0.78, -0.16; P = .005; n = 23). Conclusion Quantitative 23Na MRI is sensitive to alterations of brain sodium homeostasis within disease-relevant regions in patients with amyotrophic lateral sclerosis (ALS). This supports further investigation of abnormal sodium concentration as a potential marker of neurodegenerative processes in patients with ALS that could be used as a secondary endpoint in clinical trials. © RSNA, 2019 Online supplemental material is available for this article.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais/patologia , Isótopos de Sódio/farmacocinética , Adulto , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/patologia , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tratos Piramidais/metabolismo
3.
Mult Scler ; 25(1): 39-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29064346

RESUMO

BACKGROUND: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. OBJECTIVE: To determine in vivo the metabolic counterpart of brain sodium accumulation. MATERIALS/METHODS: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. RESULTS: MS patients showed significant 23Na accumulations with lower choline and glutamate-glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. CONCLUSION: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.


Assuntos
Substância Cinzenta/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Sódio/metabolismo , Substância Branca/metabolismo , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
4.
Brain Topogr ; 31(3): 380-391, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29170853

RESUMO

Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly linked to donepezil intake and sleep deprivation. Taking into account the sleep stages extracted from the EEG data we revealed that a network linked to sleep is interacting with sleep deprivation but not with medication intake. We successfully extracted the functional resting-state networks modified by donepezil intake, sleep and SD. We observed donepezil induced whole brain connectivity alterations forming a network separated from the changes induced by sleep and SD, a result which shows the utility of this approach to check for the validity of pharmacological resting-state analysis of the tested medications without the need of taking into account the subject specific vigilance.


Assuntos
Encéfalo/efeitos dos fármacos , Donepezila/farmacologia , Rede Nervosa/efeitos dos fármacos , Nootrópicos/farmacologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Privação do Sono/diagnóstico por imagem
5.
Neuroimage ; 157: 173-183, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602596

RESUMO

In light of technical advancements supporting exploration of MR signals other than 1H, sodium (23Na) has received attention as a marker of ionic homeostasis and cell viability. Here, we evaluate for the first time the possibility that 23Na-MRI is sensitive to pathological processes occurring in human epilepsy. A normative sample of 27 controls was used to normalize regions of interest (ROIs) from 1424 unique brain locales on quantitative 23Na-MRI and high-resolution 1H-MPRAGE images. ROIs were based on intracerebral electrodes in ten patients undergoing epileptic network mapping. The stereo-EEG gold standard was used to define regions as belonging to primarily epileptogenic, secondarily irritative and to non-involved regions. Estimates of total sodium concentration (TSC) on 23Na-MRI and cerebrospinal fluid (CSF) on 1H imaging were extracted for each patient ROI, and normalized against the same region in controls. ROIs with disproportionate CSF contributions (ZCSF≥1.96) were excluded. TSC levels were found to be elevated in patients relative to controls except in one patient, who suffered non-convulsive seizures during the scan, in whom we found reduced TSC levels. In the remaining patients, an ANOVA (F1100= 12.37, p<0.0001) revealed a highly significant effect of clinically-defined zones (F1100= 11.13, p<0.0001), with higher normalized TSC in the epileptogenic zone relative to both secondarily irritative (F1100= 11, p=0.0009) and non-involved regions (F1100= 17.8, p<0.0001). We provide the first non-invasive, in vivo evidence of a chronic TSC elevation alongside ZCSF levels within the normative range, associated with the epileptogenic region even during the interictal period in human epilepsy, and the possibility of reduced TSC levels due to seizure. In line with modified homeostatic mechanisms in epilepsy - including altered mechanisms underlying ionic gating, clearance and exchange - we provide the first indication of 23Na-MRI as an assay of altered sodium concentrations occurring in epilepsy associated with the organization of clinically relevant divisions of pathological cortex.


Assuntos
Córtex Cerebral , Eletrocorticografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Homeostase/fisiologia , Imageamento por Ressonância Magnética/métodos , Sódio/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons , Sódio/líquido cefalorraquidiano , Adulto Jovem
6.
Mult Scler ; 23(6): 855-863, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27481208

RESUMO

BACKGROUND: Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. OBJECTIVE: To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. METHODS: A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. RESULTS: At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group ( p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex ( p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). CONCLUSION: This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.


Assuntos
Conectoma/métodos , Córtex Motor , Esclerose Múltipla/terapia , Espasticidade Muscular/terapia , Avaliação de Resultados em Cuidados de Saúde , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Espasticidade Muscular/etiologia
7.
J Neuroradiol ; 44(2): 158-164, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27865557

RESUMO

BACKGROUND: While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) patients, the relationships with disability still remain unclear. Considering that atrophy is known to impact on perfusion, we aimed to assess perfusion abnormalities in GM of MS patients, outside atrophic regions and investigate relationships with disability. METHODS: Brain perfusion of 23 relapsing remitting MS patients and 16 matched healthy subjects were assessed at 3T using the pseudo-continuous arterial spin labeling magnetic resonance imaging technique. In order to locate potential GM perfusion abnormalities in regions spared by atrophy, we combined voxelwise comparisons of GM cerebral blood flow (CBF) maps (cortex and deep GM) (P<0.005, FWE-corrected) and voxel-based-morphometry analysis (P<0.005, FDR-corrected) to exclude atrophic regions. Disability was assessed using the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite score (MSFC). RESULTS: In patients, significant GM hypoperfusion outside atrophic regions was depicted only in bilateral thalami. No other cluster was found to be hypoperfused compared to controls. Perfusion of thalami was correlated to MSFC (P=0.011, rho=0.523). A trend of correlation was found between perfusion of thalami and EDSS (P=0.061, rho=-0.396). CONCLUSION: In relapsing remitting MS, perfusion abnormalities in thalamic regions contribute to disability. These findings suggest that functional impairments of thalami, representing a major brain hub, may disturb various cerebral functions even before structural damage.


Assuntos
Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto , Atrofia/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Avaliação da Deficiência , Feminino , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/complicações , Índice de Gravidade de Doença , Marcadores de Spin
8.
J Magn Reson Imaging ; 44(2): 411-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26756662

RESUMO

PURPOSE: To detect local metabolic abnormalities over the complete human brain in multiple sclerosis (MS) patients, we used optimized fast volumic echo planar spectroscopic imaging (3D-EPSI). MATERIALS AND METHODS: Weighted mean combination of two 3D-EPSI covering the whole brain acquired at 3T in AC-PC and AC-PC+15° axial planes was performed to obtain high-quality metabolite maps for five metabolites: N-acetyl aspartate (NAA), glutamate+glutamine (Glx), choline (Cho), myo-inositol (m-Ins), and creatine+phosphocreatine (tCr). After spatial normalization, maps from 19 patients suffering from relapsing-remitting MS were compared to 19 matched controls using statistical mapping analyses to determine the topography of metabolic abnormalities. Probabilistic white matter (WM) T2 lesion maps and gray matter (GM) atrophy maps were also generated. RESULTS: Two-group analysis of variance (ANOVA) (SPM8, P < 0.005, false discovery rate [FDR]-corrected P < 0.05 at the cluster level with age and sex as confounding covariates) comparing patients and controls matched for age and sex showed clusters of abnormal metabolite levels with 1) decreased NAA (around -15%) and Glx (around 20%) predominantly in GM within prefrontal cortices, motor cortices, bilateral thalami, and mesial temporal cortices in line with neuronal/neuro-astrocytic dysfunction; 2) increased m-Ins (around + 20%) inside WM T2 lesions and in the normal-appearing WM of temporal-occipital lobes, suggesting glial activation. CONCLUSION: We demonstrate the ability to noninvasively map over the complete brain-from vertex to cerebellum-with a validated sequence, the metabolic abnormalities associated with MS, for characterizing the topography of pathological processes affecting widespread areas of WM and GM and its functional impact. J. Magn. Reson. Imaging 2016;44:411-419.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Distribuição Tecidual , Adulto Jovem
9.
Mult Scler ; 22(13): 1695-1708, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26838014

RESUMO

BACKGROUND: The compensatory effect of brain functional connectivity enhancement in relapsing-remitting multiple sclerosis (RRMS) remains controversial. OBJECTIVE: To characterize the relationships between brain functional connectivity changes and disability progression in RRMS. METHODS: Long-range connectivity, short-range connectivity, and density of connections were assessed using graph theoretical analysis of resting-state functional magnetic resonance imaging (fMRI) data acquired in 38 RRMS patients (disease duration: 120 ± 32 months) and 24 controls. All subjects were explored at baseline and all patients and six controls 2 years later. RESULTS: At baseline, levels of long-range and short-range brain functional connectivity were higher in patients compared to controls. During the follow-up, decrease in connections' density was inversely correlated with disability progression. Post-hoc analysis evidenced differential evolution of brain functional connectivity metrics in patients according to their level of disability at baseline: while patients with lowest disability at baseline experienced an increase in all connectivity metrics during the follow-up, patients with higher disability at baseline showed a decrease in the connectivity metrics. In these patients, decrease in the connectivity metrics was associated with disability progression. CONCLUSION: The study provides two main findings: (1) brain functional connectivity enhancement decreases during the disease course after reaching a maximal level, and (2) decrease in brain functional connectivity enhancement participates in disability progression.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Progressão da Doença , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Índice de Gravidade de Doença , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem
10.
J Neurooncol ; 127(2): 345-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732081

RESUMO

Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24%) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76%). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Adolescente , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Neoplasias Encefálicas/classificação , Criança , Pré-Escolar , Feminino , Seguimentos , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Lactente , Espectroscopia de Ressonância Magnética , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
11.
MAGMA ; 29(3): 491-501, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059982

RESUMO

OBJECTIVE: To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei. MATERIALS AND METHODS: Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER (1)H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume <0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data. RESULTS: The global assessment (ANOVA p < 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p < 0.0001), with significant effect of nucleus type (p < 0.0001) and hemisphere (p < 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p < 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p < 0.05). CONCLUSION: For the first time, using high resolution 2D-PRESS semi-LASER (1)H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tálamo/diagnóstico por imagem , Adulto , Análise de Variância , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Encéfalo/diagnóstico por imagem , Colina/análise , Creatina/análise , Feminino , Voluntários Saudáveis , Humanos , Lasers , Masculino , Doenças Neurodegenerativas/diagnóstico por imagem , Imagens de Fantasmas , Fosfocreatina/análogos & derivados , Fosfocreatina/análise , Software , Espectrofotometria , Tálamo/metabolismo , Adulto Jovem
12.
MAGMA ; 29(2): 245-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26983429

RESUMO

OBJECTIVES: Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. SUBJECTS AND METHODS: The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. RESULTS: Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. CONCLUSION: In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Adulto , Algoritmos , Humanos , Aumento da Imagem/métodos , Masculino , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Adulto Jovem
13.
J Magn Reson Imaging ; 42(2): 280-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25431032

RESUMO

BACKGROUND: To improve the extent over which whole brain quantitative three-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) maps can be obtained and be used to explore brain metabolism in a population of healthy volunteers. METHODS: Two short echo time (20 ms) acquisitions of 3D echo planar spectroscopic imaging at two orientations, one in the anterior commissure-posterior commissure (AC-PC) plane and the second tilted in the AC-PC +15° plane were obtained at 3 Tesla in a group of 10 healthy volunteers. B1 (+) , B1 (-) , and B0 correction procedures and normalization of metabolite signals with quantitative water proton density measurements were performed. A combination of the two spatially normalized 3D-MRSI, using a weighted mean based on the pixel wise standard deviation metabolic maps of each orientation obtained from the whole group, provided metabolite maps for each subject allowing regional metabolic profiles of all parcels of the automated anatomical labeling (AAL) atlas to be obtained. RESULTS: The combined metabolite maps derived from the two acquisitions reduced the regional intersubject variance. The numbers of AAL regions showing N-acetyl aspartate (NAA) SD/Mean ratios lower than 30% increased from 17 in the AC-PC orientation and 41 in the AC-PC+15° orientation, to a value of 76 regions of 116 for the combined NAA maps. Quantitatively, regional differences in absolute metabolite concentrations (mM) over the whole brain were depicted such as in the GM of frontal lobes (cNAA = 10.03 + 1.71; cCho = 1.78 ± 0.55; cCr = 7.29 ± 1.69; cmIns = 5.30 ± 2.67) and in cerebellum (cNAA = 5.28 ± 1.77; cCho = 1.60 ± 0.41; cCr = 6.95 ± 2.15; cmIns = 3.60 ± 0.74). CONCLUSION: A double-angulation acquisition enables improved metabolic characterization over a wide volume of the brain.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Ácido Aspártico/metabolismo , Feminino , Humanos , Masculino , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Adulto Jovem
14.
Neuroimage ; 100: 325-36, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910070

RESUMO

Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe.


Assuntos
Potenciais Evocados/fisiologia , Face , Neuroimagem Funcional/métodos , Imagem Multimodal/métodos , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Vias Visuais/fisiologia , Adulto , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Hum Brain Mapp ; 35(7): 2978-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24123475

RESUMO

At a similar stage, patients with early onset Alzheimer's disease (EOAD) have greater neocortical but less medial temporal lobe dysfunction and atrophy than the late-onset form of the disease (LOAD). Whether the organization of neural networks also differs has never been investigated. This study aims at characterizing basal functional connectivity (FC) patterns of EOAD and LOAD in two groups of 14 patients matched for disease duration and severity, relative to age-matched controls. All subjects underwent an extensive neuropsychological assessment. Magnetic resonance imaging was used to quantify atrophy and resting-state FC focusing on : the default mode network (DMN), found impaired in earlier studies on AD, and the anterior temporal network (ATN) and dorso-lateral prefrontal network (DLPFN), respectively involved in declarative memory and executive functions. Patterns of atrophy and cognitive impairment in EOAD and LOAD were in accordance with previous reports. FC within the DMN was similarly decreased in both EOAD and LOAD relative to controls. However, a double-dissociated pattern of FC changes in ATN and DLPFN was found. EOAD exhibited decreased FC in the DLPFN and increased FC in the ATN relative to controls, while the reverse pattern was found in LOAD. In addition, ATN and DLPFN connectivity correlated respectively with memory and executive performances, suggesting that increased FC is here likely to reflect compensatory mechanisms. Thus, large-scale neural network changes in EOAD and LOAD endorse both common features and differences, probably related to a distinct distribution of pathological changes.


Assuntos
Doença de Alzheimer/patologia , Mapeamento Encefálico , Córtex Cerebral/patologia , Rede Nervosa/patologia , Idade de Início , Idoso , Atrofia , Estudos de Casos e Controles , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Modelos Neurológicos , Rede Nervosa/irrigação sanguínea , Testes Neuropsicológicos , Oxigênio/sangue , Estatística como Assunto
16.
Muscle Nerve ; 49(4): 551-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23873504

RESUMO

INTRODUCTION: We investigated the functional and structural integrity of the corticospinal tract (CST) using diffusion tensor imaging (DTI) and the triple stimulation technique (TST) in patients with amyotrophic lateral sclerosis (ALS). METHODS: Fourteen patients with ALS, 13 healthy controls (HCs), and 6 patients with lower motor neuron (LMN) syndrome underwent DTI and TST. RESULTS: The mean diffusivity was higher in ALS patients than HCs (P < 0.01). The TST ratio was lower in ALS patients compared with HCs (P < 0.001) and in LMN patients compared with HCs (P < 0.05). The increase in the mean diffusivity was correlated with the decrease in the TST ratio (P < 0.01). CONCLUSIONS: Significant correlations exist between the DTI and TST results, indicating both structural and functional involvement of the CST in patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Estimulação Magnética Transcraniana/métodos , Adulto , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
MAGMA ; 27(1): 53-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23907269

RESUMO

OBJECT: Sodium accumulation is involved in neuronal injury occurring in multiple sclerosis (MS). We aimed to assess sodium accumulation in progressive MS, known to suffer from severe neuronal injury. MATERIALS AND METHODS: 3D-(23)Na-MRI was obtained on a 3T-MR-scanner in 20 progressive MS patients [11 primary-progressive (PPMS) and nine secondary-progressive (SPMS)] and 15 controls. Total sodium concentrations (TSC) within grey matter (GM), normal-appearing white matter (WM) and lesions were extracted. Statistical mapping analyses of TSC abnormalities were also performed. RESULTS: Progressive MS patients presented higher GM-TSC values (48.8 ± 3.1 mmol/l wet tissue vol, p < 0.001) and T2lesions-TSC values (50.9 ± 2.2 mmol/l wet tissue vol, p = 0.01) compared to GM and WM of controls. Statistical mapping analysis showed TSC increases in PPMS patients confined to motor and somatosensory cortices, prefrontal cortices, pons and cerebellum. In SPMS, TSC increases were associated with areas involving: primary motor, premotor and somatosensory cortices; prefrontal, cingulate and visual cortices; the corpus callosum, thalami, brainstem and cerebellum. Anterior prefrontal and premotor cortices TSC were correlated with disability. CONCLUSION: Sodium accumulation is present in progressive MS patients, more restricted to the motor system in PPMS and more widespread in SPMS. Local brain sodium accumulation appears as a promising marker to monitor patients with progressive MS.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/patologia , Neurônios/metabolismo , Sódio/química , Adulto , Idoso , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo
18.
Radiology ; 264(3): 859-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22807483

RESUMO

PURPOSE: To quantify brain sodium accumulations and characterize for the first time the spatial location of sodium abnormalities at different stages of relapsing-remitting (RR) multiple sclerosis (MS) by using sodium 23 ((23)Na) magnetic resonance (MR) imaging. MATERIALS AND METHODS: This study was approved by the local committee on ethics, and written informed consent was obtained from all participants. Three-dimensional (23)Na MR imaging data were obtained with a 3.0-T unit in two groups of patients with RR MS-14 with early RR MS (disease duration <5 years) and 12 with advanced RR MS (disease duration >5 years)-and 15 control subjects. Quantitative assessment of total sodium concentration (TSC) levels within compartments (MS lesions, white matter [WM], and gray matter [GM]) as well as statistical mapping analyses of TSC abnormalities were performed. RESULTS: TSC was increased inside demyelinating lesions in both groups of patients, whereas increased TSC was observed in normal-appearing WM and GM only in those with advanced RR MS. In patients, increased TSC inside GM was correlated with disability (as determined with the Expanded Disability Status Scale [EDSS] score; P = .046, corrected) and lesion load at T2-weighted imaging (P = .003, corrected) but not with disease duration (P = .089, corrected). Statistical mapping analysis showed confined TSC increases inside the brainstem, cerebellum, and temporal poles in early RR MS and widespread TSC increases that affected the entire brain in advanced RR MS. EDSS score correlated with TSC increases inside motor networks. CONCLUSION: TSC accumulation dramatically increases in the advanced stage of RR MS, especially in the normal-appearing brain tissues, concomitant with disability. Brain sodium MR imaging may help monitor the occurrence of tissue injury and disability.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/metabolismo , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Sódio/metabolismo , Adulto , Área Sob a Curva , Avaliação da Deficiência , Feminino , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Estatísticas não Paramétricas
19.
Mult Scler ; 18(5): 587-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21965422

RESUMO

BACKGROUND: Previous studies have demonstrated that intrathecal synthesis of IgM is observed in multiple sclerosis (MS) and correlates with a worse disease course. These results suggest that IgM participates in the formation of MS lesions. OBJECTIVE: The aim of the present study was to assess the potential association between the level of intrathecal synthesis of IgM measured after a clinically isolated syndrome (CIS) and the subsequent formation of brain lesions. METHODS: Fifty seven patients with a CIS and a high risk developing MS were enrolled in a longitudinal study. Examination of cerebrospinal fluid was performed after the CIS and included measures of intrathecal IgM and IgG synthesis. Patients were assessed with the same 1.5 Tesla magnetic resonance imaging (MRI) system at baseline and after a mean follow-up period of 49 months (range 36-60). Spearman Rank correlation was used to assess the potential correlations between levels of intrathecal immunoglobulin synthesis and MRI data. RESULTS: The level of intrathecal IgM synthesis was correlated with the number of gadolinium-enhancing lesions at baseline (p = 0.01) and with accrual of brain lesions during the follow-up period (p = 0.02). By taking into account brain sub-regions, we demonstrated that the level of intrathecal IgM synthesis was only correlated with the increased number of lesions in the periventricular regions (p = 0.004). The level of intrathecal IgG synthesis was not correlated with any MRI data. CONCLUSION: The present longitudinal study demonstrates that the level of intrathecal IgM synthesis measured after a CIS is associated with subsequent lesion accrual during the first years of MS. This result emphasizes the involvement of IgM in plaque formation.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Imunoglobulina M/biossíntese , Imageamento por Ressonância Magnética , Esclerose Múltipla/imunologia , Adulto , Encéfalo/patologia , Meios de Contraste , Doenças Desmielinizantes/líquido cefalorraquidiano , Doenças Desmielinizantes/patologia , Progressão da Doença , Feminino , França , Humanos , Imunoglobulina M/líquido cefalorraquidiano , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
20.
Mult Scler ; 18(11): 1585-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22454097

RESUMO

BACKGROUND: The ability of conventional magnetic resonance imaging (MRI) to predict subsequent physical disability and cognitive deterioration after a clinically isolated syndrome (CIS) is weak. OBJECTIVES: We aimed to investigate whether conventional MRI changes over 1 year could predict cognitive and physical disability 5 years later in CIS. We performed analyses using a global approach (T(2) lesion load, number of T(2) lesions), but also a topographic approach. METHODS: This study included 38 patients with a CIS. At inclusion, 10 out of 38 patients fulfilled the 2010 revised McDonald's criteria for the diagnosis of multiple sclerosis. Expanded Disability Status Scale (EDSS) evaluation was performed at baseline, year 1 and year 5, and cognitive evaluation at baseline and year 5. T(2)-weighted MRI was performed at baseline and year 1. We used voxelwise analysis to analyse the predictive value of lesions location for subsequent disability. RESULTS: Using the global approach, no correlation was found between MRI and clinical data. The occurrence or growth of new lesions in the brainstem was correlated with EDSS changes over the 5 years of follow-up. The occurrence or growth of new lesions in cerebellum, thalami, corpus callosum and frontal lobes over 1 year was correlated with cognitive impairment at 5 years. CONCLUSION: The assessment of lesion location at the first stage of multiple sclerosis may be of value to predict future clinical disability.


Assuntos
Encéfalo/patologia , Avaliação da Deficiência , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Adolescente , Adulto , Encéfalo/fisiopatologia , Cognição , Progressão da Doença , Feminino , Humanos , Modelos Lineares , Estudos Longitudinais , Masculino , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/psicologia , Testes Neuropsicológicos , Valor Preditivo dos Testes , Prognóstico , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA