Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39232584

RESUMO

Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.

2.
Mol Cell ; 69(1): 24-35.e5, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290612

RESUMO

The protection and efficient restart of stalled replication forks is critical for the maintenance of genome integrity. Here, we identify a regulatory pathway that promotes stalled forks recovery from replication stress. We show that the mammalian replisome component C20orf43/RTF2 (homologous to S. pombe Rtf2) must be removed for fork restart to be optimal. We further show that the proteasomal shuttle proteins DDI1 and DDI2 are required for RTF2 removal from stalled forks. Persistence of RTF2 at stalled forks results in fork restart defects, hyperactivation of the DNA damage signal, accumulation of single-stranded DNA (ssDNA), sensitivity to replication drugs, and chromosome instability. These results establish that RTF2 removal is a key determinant for the ability of cells to manage replication stress and maintain genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Instabilidade Genômica/genética , Ácido Aspártico Proteases/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA/biossíntese , Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Origem de Replicação/genética , Estresse Fisiológico/genética
3.
Genes Dev ; 30(6): 645-59, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980189

RESUMO

Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.


Assuntos
Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Rim/patologia , Hepatopatias/genética , Animais , Medula Óssea/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Epistasia Genética , Exodesoxirribonucleases/metabolismo , Fígado/patologia , Camundongos , Enzimas Multifuncionais , Estrutura Terciária de Proteína , Transporte Proteico
4.
Mol Cell ; 59(3): 478-90, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26253028

RESUMO

Repair of DNA interstrand crosslinks requires action of multiple DNA repair pathways, including homologous recombination. Here, we report a de novo heterozygous T131P mutation in RAD51/FANCR, the key recombinase essential for homologous recombination, in a patient with Fanconi anemia-like phenotype. In vitro, RAD51-T131P displays DNA-independent ATPase activity, no DNA pairing capacity, and a co-dominant-negative effect on RAD51 recombinase function. However, the patient cells are homologous recombination proficient due to the low ratio of mutant to wild-type RAD51 in cells. Instead, patient cells are sensitive to crosslinking agents and display hyperphosphorylation of Replication Protein A due to increased activity of DNA2 and WRN at the DNA interstrand crosslinks. Thus, proper RAD51 function is important during DNA interstrand crosslink repair outside of homologous recombination. Our study provides a molecular basis for how RAD51 and its associated factors may operate in a homologous recombination-independent manner to maintain genomic integrity.


Assuntos
Reparo do DNA , DNA/metabolismo , Anemia de Fanconi/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Sobrevivência Celular , Reagentes de Ligações Cruzadas , DNA Helicases/metabolismo , Exodesoxirribonucleases/metabolismo , Anemia de Fanconi/metabolismo , Feminino , Instabilidade Genômica , Células HEK293 , Heterozigoto , Humanos , Lactente , Mutação , RecQ Helicases/metabolismo , Helicase da Síndrome de Werner
5.
Proc Natl Acad Sci U S A ; 112(13): 4068-73, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775543

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of the ß-amyloid peptide (Aß), which likely contributes to disease via multiple mechanisms. Increasing evidence implicates inflammation in AD, the origins of which are not completely understood. We investigated whether circulating Aß could initiate inflammation in AD via the plasma contact activation system. This proteolytic cascade is triggered by the activation of the plasma protein factor XII (FXII) and leads to kallikrein-mediated cleavage of high molecular-weight kininogen (HK) and release of proinflammatory bradykinin. Aß has been shown to promote FXII-dependent cleavage of HK in vitro. In addition, increased cleavage of HK has been found in the cerebrospinal fluid of patients with AD. Here, we show increased activation of FXII, kallikrein activity, and HK cleavage in AD patient plasma. Increased contact system activation is also observed in AD mouse model plasma and in plasma from wild-type mice i.v. injected with Aß42. Our results demonstrate that Aß42-mediated contact system activation can occur in the AD circulation and suggest new pathogenic mechanisms, diagnostic tests, and therapies for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fator XII/metabolismo , Fator XIIa/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Demência/genética , Demência/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fator XII/genética , Fator XIIa/genética , Feminino , Humanos , Inflamação , Calicreínas/sangue , Cininogênios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/metabolismo , Transferrina/metabolismo
6.
Nat Commun ; 15(1): 1943, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431617

RESUMO

DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.


Assuntos
Replicação do DNA , DNA , Animais , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo , RNA/genética , Ribonucleases/metabolismo , Mamíferos/genética
7.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993543

RESUMO

Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.

8.
Trends Pharmacol Sci ; 43(10): 820-837, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028355

RESUMO

Biomolecular condensates organize cellular functions in the absence of membranes. These membraneless organelles can form through liquid-liquid phase separation coalescing RNA and proteins into well-defined, yet dynamic, structures distinct from the surrounding cellular milieu. Numerous physiological and disease-causing processes link to biomolecular condensates, which could impact drug discovery in several ways. First, disruption of pathological condensates seeded by mutated proteins or RNAs may provide new opportunities to treat disease. Second, condensates may be leveraged to tackle difficult-to-drug targets lacking binding pockets whose function depends on phase separation. Third, condensate-resident small molecules and RNA therapeutics may display unexpected pharmacology. We discuss the potential impact of phase separation on drug discovery and RNA therapeutics, leveraging concrete examples, towards novel clinical opportunities.


Assuntos
Organelas , RNA , Condensados Biomoleculares , Descoberta de Drogas , Humanos , Organelas/química , Organelas/metabolismo , Proteínas/metabolismo , RNA/análise
9.
Cell Cycle ; 19(19): 2553-2561, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32865112

RESUMO

Severe cellular sensitivity and aberrant chromosomal rearrangements in response to DNA interstrand crosslink (ICL) inducing agents are hallmarks of Fanconi anemia (FA) deficient cells. These phenotypes have previously been ascribed to inappropriate activity of non-homologous end joining (NHEJ) rather than a direct consequence of DNA ICL repair defects. Here we used chemical inhibitors, RNAi, and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 to inactivate various components of NHEJ in cells from FA patients. We show that suppression of DNA-PKcs, DNA Ligase IV, and 53BP1 is not capable of rescuing ICL-induced proliferation defects and only 53BP1 knockout partially suppresses the chromosomal abnormalities of FA patient cells.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Proliferação de Células , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Células HCT116 , Humanos , Mutação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
11.
Mol Cancer Res ; 12(6): 855-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24803643

RESUMO

UNLABELLED: Carcinoma-associated fibroblasts (CAFs) are now widely appreciated for their contributions to tumor progression. However, the ability of CAFs to regulate anoikis, detachment-induced cell death, has yet to be investigated. Here, a new role for CAFs in blocking anoikis in multiple cell lines, facilitating luminal filling in three-dimensional cell culture, and promoting anchorage-independent growth is defined. In addition, a novel mechanism underlying anoikis inhibition is discovered. Importantly, it was demonstrated that CAFs secrete elevated quantities of insulin-like growth factor-binding proteins (IGFBPs) that are both necessary for CAF-mediated anoikis inhibition and sufficient to block anoikis in the absence of CAFs. Furthermore, these data reveal a unique antiapoptotic mechanism for IGFBPs: the stabilization of the antiapoptotic protein Mcl-1. In aggregate, these data delineate a novel role for CAFs in promoting cell survival during detachment and unveil an additional mechanism by which the tumor microenvironment contributes to cancer progression. These results also identify IGFBPs as potential targets for the development of novel chemotherapeutics designed to eliminate detached cancer cells. IMPLICATIONS: The ability of CAF-secreted IGFBPs to block anoikis in breast cancer represents a novel target for the development of therapeutics aimed at specifically eliminating extracellular matrix-detached breast cancer cells.


Assuntos
Anoikis/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA