Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(2): 719-734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090191

RESUMO

The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons. We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome-wide association studies were tested for a geographic signature of climate adaptation. Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome-wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functional FRIGIDA variants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated with GIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature. The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real-time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Estações do Ano
2.
Proc Natl Acad Sci U S A ; 116(36): 17890-17899, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31420516

RESUMO

Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Flores/fisiologia , Mutação , Seleção Genética , Evolução Biológica , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Fenótipo , Estações do Ano , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 113(20): E2812-21, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140640

RESUMO

Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.


Assuntos
Arabidopsis/genética , Estações do Ano , Aclimatação , Adaptação Fisiológica/genética , Clima , Mudança Climática
4.
New Phytol ; 216(1): 291-302, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752957

RESUMO

Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Flores/fisiologia , Variação Genética , Arabidopsis/crescimento & desenvolvimento , Biomassa , Genótipo , Germinação , Endogamia , Modelos Lineares , Dormência de Plantas/genética , Reprodução , Estações do Ano
5.
Proc Natl Acad Sci U S A ; 111(22): 7906-13, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843140

RESUMO

If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.


Assuntos
Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Evolução Biológica , Aquecimento Global , Aclimatação/genética , Adaptação Fisiológica/genética , Arabidopsis/crescimento & desenvolvimento , Europa (Continente) , Aptidão Genética/genética , Aptidão Genética/fisiologia , Genótipo , Sementes/genética , Sementes/fisiologia
6.
New Phytol ; 210(2): 564-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26681345

RESUMO

The genetic basis of growth and development is often studied in constant laboratory environments; however, the environmental conditions that organisms experience in nature are often much more dynamic. We examined how daily temperature fluctuations, average temperature, day length and vernalization influence the flowering time of 59 genotypes of Arabidopsis thaliana with allelic perturbations known to affect flowering time. For a subset of genotypes, we also assessed treatment effects on morphology and growth. We identified 17 genotypes, many of which have high levels of the floral repressor FLOWERING LOCUS C (FLC), that bolted dramatically earlier in fluctuating - as opposed to constant - warm temperatures (mean = 22°C). This acceleration was not caused by transient VERNALIZATION INSENSITIVE 3-mediated vernalization, differential growth rates or exposure to high temperatures, and was not apparent when the average temperature was cool (mean = 12°C). Further, in constant temperatures, contrary to physiological expectations, these genotypes flowered more rapidly in cool than in warm environments. Fluctuating temperatures often reversed these responses, restoring faster bolting in warm conditions. Independently of bolting time, warm fluctuating temperature profiles also caused morphological changes associated with shade avoidance or 'high-temperature' phenotypes. Our results suggest that previous studies have overestimated the effect of the floral repressor FLC on flowering time by using constant temperature laboratory conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Temperatura Alta , Proteínas de Domínio MADS/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Temperatura Baixa , Meio Ambiente , Flores/genética , Genótipo , Proteínas de Domínio MADS/genética , Fotoperíodo , Fatores de Tempo
7.
Mol Ecol ; 22(13): 3552-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23506537

RESUMO

Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.


Assuntos
Arabidopsis/genética , Interação Gene-Ambiente , Locos de Características Quantitativas , Seleção Genética , Alelos , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Epistasia Genética , Flores/genética , Flores/crescimento & desenvolvimento , Ligação Genética , Fenótipo , Polimorfismo Genético , Reprodução
8.
Science ; 323(5916): 930-4, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19150810

RESUMO

Like many species, the model plant Arabidopsis thaliana exhibits multiple different life histories in natural environments. We grew mutants impaired in different signaling pathways in field experiments across the species' native European range in order to dissect the mechanisms underlying this variation. Unexpectedly, mutational loss at loci implicated in the cold requirement for flowering had little effect on life history except in late-summer cohorts. A genetically informed photothermal model of progression toward flowering explained most of the observed variation and predicted an abrupt transition from autumn flowering to spring flowering in late-summer germinants. Environmental signals control the timing of this transition, creating a critical window of acute sensitivity to genetic and climatic change that may be common for seasonally regulated life history traits.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Adaptação Fisiológica , Meio Ambiente , Flores/crescimento & desenvolvimento , Mutação , Fotoperíodo , Estações do Ano , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA