Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(8): 1673-1699, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39084224

RESUMO

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.


Assuntos
Transdiferenciação Celular , Fibroblastos , Neurônios , Ativação Transcricional , Humanos , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Neurônios/metabolismo , Neurônios/citologia , RNA/genética , RNA/metabolismo , Sistemas CRISPR-Cas
2.
Genet Med ; : 101220, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39041334

RESUMO

PURPOSE: The gold standard for identification of post-zygotic variants (PZVs) is droplet digital PCR (ddPCR) or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants. METHOD: Our pipelines detect PZV in parents (gonosomal mosaicism "pGoM") and children (somatic mosaicism, "M3"). We applied them to research exome sequencing (ES) data from The Australian Cerebral Palsy Biobank (ACPB, n=145 trios) and Simons Simplex Collection (SSC, n=405 families). Candidate mosaic variants were validated using deep amplicon sequencing or ddPCR. RESULTS: 69.2% (M3trio), 63.9% (M3single) and 92.7% (pGoM) of detected variants were validated, with 48.6%, 56.7% and 26.2% of variants respectively meeting strict criteria for mosaicism. In the ACPB, 16.6% of probands and 20.7% of parents had at least one true positive somatic or pGoM variant respectively. A large proportion of PZVs detected in SSC parents (79.8%) and child (94.5%) were not previously reported. We reclassified 3.7-8.0% of germline de novo variants as mosaic. CONCLUSION: Many PZVs were incorrectly classified as germline variants or missed by previous approaches. Systematic application of our pipelines could increase genetic diagnostic rate, improve estimates of recurrence risk in families, and benefit novel disease gene identification.

3.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA