RESUMO
Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.
Assuntos
Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/virologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Fenótipo , Cromossomos de Plantas/genética , Vírus do Mosaico/patogenicidade , Genes de Plantas , Marcadores GenéticosRESUMO
Drought stress poses significant productivity challenges to wheat. Several studies suggest that lower malondialdehyde (MDA) content may be a promising trait to identify drought-tolerant wheat genotypes. However, the optimal polyethylene glycol (PEG-6000) concentration for screening seedlings for drought tolerance based on MDA quantification is not clear. The aim of this study was to verify whether a 10% (w/v) PEG-6000 concentration-induced water stress was reliable for discriminating between twenty-two drought-susceptible and drought-tolerant tetraploid wheat (Triticum turgidum spp. durum, turanicum, and carthlicum) accessions based on MDA quantification. To do so, its correlation with morpho-physiological traits, notoriously related to seedling drought tolerance, i.e., Seedling Vigour Index and Seedling Water Content, was evaluated. Results showed that MDA content was not a reliable biomarker for drought tolerance, as it did not correlate significantly with the aforementioned morpho-physiological traits, which showed, on the contrary, high positive correlation with each other. Combining our study with the cited literature, it clearly emerges that different wheat genotypes have different "water stress thresholds", highlighting that using a 10% PEG-6000 concentration for screening wheat seedlings for drought tolerance based on MDA quantification is not reliable. Given the conflicting results in the literature, this study provides important insights for selecting appropriate methods for evaluating wheat seedling drought tolerance.
RESUMO
Durum wheat (Triticum turgidum L. ssp. durum) landraces, traditional local varieties representing an intermediate stage in domestication, are gaining attention due to their high genetic variability and performance in challenging environments. While major kernel metabolites have been examined, limited research has been conducted on minor bioactive components like lipids, despite their nutritional benefits. To address this, we analyzed twenty-two tetraploid accessions, comprising modern elite cultivars and landraces, to (i) verify if the selection process for yield-related traits carried out during the Green Revolution has influenced lipid amount and composition; (ii) uncover the extent of lipid compositional variability, giving evidence that lipid fingerprinting effectively identifies evolutionary signatures; and (iii) identify genotypes interesting for breeding programs to improve yield and nutrition. Interestingly, total fat did not correlate with kernel weight, indicating lipid composition as a promising trait for selection. Tri- and di-acylglycerol were the major lipid components along with free fatty acids, and their relative content varied significantly among genotypes. In particular, landraces belonging to T. turanicum and carthlicum ecotypes differed significantly in total lipid and fatty acid profiles. Our findings provide evidence that landraces can be a genetically relevant source of lipid variability, with potential to be exploited for improving wheat nutritional quality.
RESUMO
Wheat is one of the most important cereal crops, representing a fundamental source of calories and protein for the global human population. Drought stress (DS) is a widespread phenomenon, already affecting large wheat-growing areas worldwide, and a major threat for cereal productivity, resulting in consistent losses in average grain yield (GY). Climate change is projected to exacerbate DS incidence and severity by increasing temperatures and changing rainfall patterns. Estimating that wheat production has to substantially increase to guarantee food security to a demographically expanding human population, the need for breeding programs focused on improving wheat drought resistance is manifest. Drought occurrence, in terms of time of appearance, duration, frequency, and severity, along the plant's life cycle varies significantly among different environments and different agricultural years, making it difficult to identify reliable phenological, morphological, and functional traits to be used as effective breeding tools. The situation is further complicated by the presence of confounding factors, e.g., other concomitant abiotic stresses, in an open-field context. Consequently, the relationship between morpho-functional traits and GY under water deficit is often contradictory; moreover, controversies have emerged not only on which traits are to be preferred, but also on how one specific trait should be desired. In this review, we attempt to identify the possible causes of these disputes and propose the most suitable selection criteria in different target environments and, thus, the best trait combinations for breeders in different drought contexts. In fact, an environment-oriented approach could be a valuable solution to overcome controversies in identifying the proper selection criteria for improving wheat drought resistance.
Assuntos
Resistência à Seca , Triticum , Humanos , Triticum/genética , Seleção de Pacientes , Melhoramento Vegetal/métodos , Grão Comestível/genética , SecasRESUMO
Increasing temperatures, heat waves, and reduction of annual precipitation are all the expressions of climate change (CC), strongly affecting bread wheat (Triticum aestivum L.) grain yield in Southern Europe. Being temperature the major driving force of plants' phenological development, these variations also have effects on wheat phenology, with possible consequences on grain quality, and gluten protein accumulation. Here, through a case study in the Bolognese Plain (North of Italy), we assessed the effects of CC in the area, the impacts on bread wheat phenological development, and the consequences on grain gluten quality. The increasing trend in mean annual air temperature in the area since 1952 was significant, with a breakpoint identified in 1989, rising from 12.7 to 14.1°C, accompanied by the signals of increasing aridity, i.e., increase in water table depth. Bread wheat phenological development was compared in two 15-year periods before and after the breakpoint, i.e., 1952-1966 (past period), and 2006-2020 (present period), the latest characterized by aridity and increased temperatures. A significant shortening of the chronological time necessary to reach the main phenological phases was observed for the present period compared to the past period, finally shortening the whole life cycle. This reduction, as well as the higher temperature regime, affected gluten accumulation during the grain-filling process, as emerged analyzing gluten composition in grain samples of the same variety harvested in the area both before and after the breakpoint in temperature. In particular, the proportion of gluten polymers (i.e., gliadins, high and low molecular weight glutenins, and their ratio) showed a strong and significant correlation with cumulative growing degree days (CGDDs) accumulated during the grain filling. Higher CGDD values during the period, typical of CC in Southern Europe, accounting for higher temperature and faster grain filling, correlated with gliadins, high molecular weight glutenins, and their proportion with low molecular weight glutenins. In summary, herein reported, data might contribute to assessing the effects of CC on wheat phenology and quality, representing a tool for both predictive purposes and decision supporting systems for farmers, as well as can guide future breeding choices for varietal innovation.
RESUMO
BACKGROUND: Collections of nearly isogenic lines where each line carries a delimited portion of a donor source genome into a common recipient genetic background are known as introgression libraries and have already shown to be instrumental for the dissection of quantitative traits. By means of marker-assisted backcrossing, we have produced an introgression library using the extremely early-flowering maize (Zea mays L.) variety Gaspé Flint and the elite line B73 as donor and recipient genotypes, respectively, and utilized this collection to investigate the genetic basis of flowering time and related traits of adaptive and agronomic importance in maize. RESULTS: The collection includes 75 lines with an average Gaspé Flint introgression length of 43.1 cM. The collection was evaluated for flowering time, internode length, number of ears, number of nodes (phytomeres), number of nodes above the ear, number and proportion of nodes below the ear and plant height. Five QTLs for flowering time were mapped, all corresponding to major QTLs for number of nodes. Three additional QTLs for number of nodes were mapped. Besides flowering time, the QTLs for number of nodes drove phenotypic variation for plant height and number of nodes below and above the top ear, but not for internode length. A number of apparently Mendelian-inherited phenotypes were also observed. CONCLUSIONS: While the inheritance of flowering time was dominated by the well-known QTL Vgt1, a number of other important flowering time QTLs were identified and, thanks to the type of plant material here utilized, immediately isogenized and made available for fine mapping. At each flowering time QTL, early flowering correlated with fewer vegetative phytomeres, indicating the latter as a key developmental strategy to adapt the maize crop from the original tropical environment to the northern border of the temperate zone (southern Canada), where Gaspé Flint was originally cultivated. Because of the trait differences between the two parental genotypes, this collection will serve as a permanent source of nearly isogenic materials for multiple studies of QTL analysis and cloning.
Assuntos
Flores/genética , Endogamia , Zea mays/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Biblioteca Gênica , Genótipo , Padrões de Herança/genética , Fenótipo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Especificidade da Espécie , Fatores de TempoRESUMO
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.
RESUMO
Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha(-1)). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.
Assuntos
Adaptação Fisiológica/genética , Grão Comestível/genética , Locos de Características Quantitativas/genética , Triticum/genética , Água/fisiologia , Cromossomos de Plantas/genética , Meio Ambiente , Epistasia Genética , Variação Genética , Endogamia , Escore Lod , Fenótipo , Triticum/anatomia & histologiaRESUMO
The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.
Assuntos
Triticum/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cromossomos de Plantas/genética , Domesticação , Variação Genética , Genoma de Planta , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Sintenia , Tetraploidia , Triticum/classificação , Triticum/metabolismoRESUMO
The time course of biosynthesis and accumulation of storage proteins in developing grains of durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) pasta-quality reference cv. Svevo was investigated at the protein level for the first time. Seeds were harvested at key kernel developmental stages, namely, 3 (seed increase 3-fold in size), 5 (kernel development, water-ripe stage), 11 (kernel development, water-ripe stage), 16 (kernel full development, water-ripe stage), 21 (milk-ripe stage), and 30 (dough stage) days postanthesis (dpa). Gliadins and glutenins were fractionated according to their different solubility and individually analyzed after fractionation by reversed-phase high performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins were identified by liquid chromatography-tandem mass spectrometry of proteolytic peptides. The α- and γ-gliadin were already detected at 3 dpa. The biosynthesis of high molecular mass glutenin Bx7 was slightly delayed (11 dpa). Most of the gluten proteins accumulated rapidly between 11 and 21 dpa, with a minor further increase up to 30 dpa. The expression pattern of gluten proteins in Triticum durum at the early stages of synthesis provides reference data sets for future applications in crop breeding and growth monitoring.