Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442232

RESUMO

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.


Assuntos
Arsênio , Arsenitos , Humanos , Antimônio , Oxirredução
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293152

RESUMO

Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.


Assuntos
Carboxiliases , Líquidos Iônicos , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Dopamina/uso terapêutico , Cisteína , Metanefrina , Glicerol/uso terapêutico , Trealose/uso terapêutico , Líquidos Iônicos/uso terapêutico , Catecóis/farmacologia , Catecóis/química , Estrogênios/uso terapêutico
3.
Bioorg Chem ; 108: 104552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33357981

RESUMO

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4'-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavonoides/química , Glicogênio Fosforilase/metabolismo , Humanos , Hipoglicemiantes/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Biol Chem ; 292(12): 4847-4860, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28179427

RESUMO

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Spirochaeta/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Celulases/química , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Spirochaeta/química , Temperatura , Xilanos/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(13): 5237-42, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21393568

RESUMO

Clostridium thermocellum is a well-characterized cellulose-degrading microorganism. The genome sequence of C. thermocellum encodes a number of proteins that contain type I dockerin domains, which implies that they are components of the cellulose-degrading apparatus, but display no significant sequence similarity to known plant cell wall-degrading enzymes. Here, we report the biochemical properties and crystal structure of one of these proteins, designated CtCel124. The protein was shown to be an endo-acting cellulase that displays a single displacement mechanism and acts in synergy with Cel48S, the major cellulosomal exo-cellulase. The crystal structure of CtCel124 in complex with two cellotriose molecules, determined to 1.5 Å, displays a superhelical fold in which a constellation of α-helices encircle a central helix that houses the catalytic apparatus. The catalytic acid, Glu96, is located at the C-terminus of the central helix, but there is no candidate catalytic base. The substrate-binding cleft can be divided into two discrete topographical domains in which the bound cellotriose molecules display twisted and linear conformations, respectively, suggesting that the enzyme may target the interface between crystalline and disordered regions of cellulose.


Assuntos
Celulase/química , Celulase/metabolismo , Estrutura Secundária de Proteína , Sequência de Carboidratos , Domínio Catalítico , Celulase/genética , Celulose/metabolismo , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Estrutura Terciária de Proteína
6.
Int J Mol Sci ; 15(7): 11783-98, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24992597

RESUMO

The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, ß = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Desulfovibrio/enzimologia , Compostos de Tungstênio/farmacologia , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Desulfovibrio/efeitos dos fármacos , Dados de Sequência Molecular , Molibdênio/farmacologia , Periplasma/metabolismo , Ligação Proteica
7.
Int J Mol Sci ; 15(2): 2223-36, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24492481

RESUMO

The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an αßγ heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, ß = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an αßγ heterotrimer.


Assuntos
Aldeído Desidrogenase/química , Escherichia coli/enzimologia , Periplasma/enzimologia , Cristalografia por Raios X , Conformação Proteica , Espalhamento a Baixo Ângulo
8.
Front Chem ; 12: 1379914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170866

RESUMO

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.

9.
Diabetol Metab Syndr ; 15(1): 203, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845766

RESUMO

INTRODUCTION: Diabetes mellitus (DM) is associated with severe forms of COVID-19 but little is known about the diabetes-related phenotype considering pre-admission, on-admission and data covering the entire hospitalization period. METHODS: We analyzed COVID-19 inpatients (n = 3327) aged 61.2(48.2-71.4) years attended from March to September 2020 in a public hospital. RESULTS: DM group (n = 1218) differed from Non-DM group (n = 2109) by higher age, body mass index (BMI), systolic blood pressure and lower O2 saturation on admission. Gender, ethnicity and COVID-19-related symptoms were similar. Glucose and several markers of inflammation, tissue injury and organ dysfunction were higher among patients with diabetes: troponin, lactate dehydrogenase, creatine phosphokinase (CPK), C-reactive protein (CRP), lactate, brain natriuretic peptide, urea, creatinine, sodium, potassium but lower albumin levels. Hospital (12 × 11 days) and intensive care unit permanence (10 × 9 days) were similar but DM group needed more vasoactive, anticoagulant and anti-platelet drugs, oxygen therapy, endotracheal intubation and dialysis. Lethality was higher in patients with diabetes (39.3% × 30.7%) and increased with glucose levels and age, in male sex and with BMI < 30 kg/m2 in both groups (obesity paradox). It was lower with previous treatment with ACEi/BRA in both groups. Ethnicity and education level did not result in different outcomes between groups. Higher frequency of comorbidities (hypertension, cardiovascular/renal disease, stroke), of inflammatory (higher leucocyte number, RCP, LDH, troponin) and renal markers (urea, creatinine, potassium levels and lower sodium, magnesium) differentiated lethality risk between patients with and without diabetes. CONCLUSIONS: Comorbidities, inflammatory markers and renal disfunction but not Covid-19-related symptoms, obesity, ethnicity and education level differentiated lethality risk between patients with and without diabetes.

10.
Methods Mol Biol ; 2652: 199-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093477

RESUMO

Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.


Assuntos
Corantes Fluorescentes , Proteínas , Proteínas/química , Temperatura , Estabilidade Proteica , Fluorometria/métodos , Soluções Tampão
11.
Methods Mol Biol ; 2652: 381-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093488

RESUMO

Small-angle X-ray Scattering (SAXS) is a versatile and powerful technique with applications in a wide range of fields. The continuous improvements in hardware, data analysis software, and standards for validation significantly contributed to increase its popularity and, nowadays, SAXS is a well-established method. SAXS allows to study flexible and dynamic systems (e.g., proteins and other biomolecules) in solution, providing information about their size and shape. Contrary to other structural characterization methods, SAXS has no limitations on the size of the particle under study and can be used in integrated approaches to reveal important insights otherwise difficult to obtain regarding folding-unfolding, conformational changes, movement of flexible regions, and the formation of complexes.This chapter, in addition to a concise overview on the methodology, intends to systematically enumerate the main steps involved in sample preparation and data collection, processing and analysis including useful practical notes to identify and overcome common bottlenecks. This way, a less experienced user can use the content of the chapter as a starting point to properly design and perform a successful SAXS experiment.


Assuntos
Proteínas , Software , Difração de Raios X , Espalhamento a Baixo Ângulo , Raios X , Proteínas/química
12.
Int J Biol Macromol ; 224: 55-67, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252630

RESUMO

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.


Assuntos
Proteínas de Bactérias , Celulossomas , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Coesinas
13.
J Biol Chem ; 286(25): 22510-20, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21378160

RESUMO

The enzymatic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The enzymes that catalyze this process include xylanases that degrade xylan, a ß-1,4-xylose polymer that is decorated with various sugars. Although xylanases efficiently hydrolyze unsubstituted xylans, these enzymes are unable to access highly decorated forms of the polysaccharide, such as arabinoxylans that contain arabinofuranose decorations. Here, we show that a Clostridium thermocellum enzyme, designated CtXyl5A, hydrolyzes arabinoxylans but does not attack unsubstituted xylans. Analysis of the reaction products generated by CtXyl5A showed that all the oligosaccharides contain an O3 arabinose linked to the reducing end xylose. The crystal structure of the catalytic module (CtGH5) of CtXyl5A, appended to a family 6 noncatalytic carbohydrate-binding module (CtCBM6), showed that CtGH5 displays a canonical (α/ß)(8)-barrel fold with the substrate binding cleft running along the surface of the protein. The catalytic apparatus is housed in the center of the cleft. Adjacent to the -1 subsite is a pocket that could accommodate an l-arabinofuranose-linked α-1,3 to the active site xylose, which is likely to function as a key specificity determinant. CtCBM6, which adopts a ß-sandwich fold, recognizes the termini of xylo- and gluco-configured oligosaccharides, consistent with the pocket topology displayed by the ligand-binding site. In contrast to typical modular glycoside hydrolases, there is an extensive hydrophobic interface between CtGH5 and CtCBM6, and thus the two modules cannot function as independent entities.


Assuntos
Clostridium thermocellum/enzimologia , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Xilanos/metabolismo , Sequência de Carboidratos , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/isolamento & purificação , Hidrólise , Modelos Moleculares , Especificidade por Substrato , Xilanos/química , Xilosidases/química , Xilosidases/genética , Xilosidases/isolamento & purificação , Xilosidases/metabolismo
14.
J Biol Chem ; 286(25): 22499-509, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21454512

RESUMO

The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to d-galactose and l-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing α- and ß-galactose residues, show that the ligand-binding site in the ß-sandwich protein is located in the loops that connect the two ß-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.


Assuntos
Cálcio/metabolismo , Galactose/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/citologia , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 106(9): 3065-70, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218457

RESUMO

Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-beta-D-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Delta4,5-anhydrogalaturonic acid (Delta4,5-GalA). Delta4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands.


Assuntos
Galectina 3/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Metabolismo dos Carboidratos , Carboidratos/química , Adesão Celular , Parede Celular/enzimologia , Galectina 3/química , Galectina 3/classificação , Galectina 3/genética , Ligantes , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Ligação Proteica , Especificidade por Substrato , Termodinâmica , Ácidos Urônicos/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-21795807

RESUMO

The cellulosome, a highly elaborate extracellular multi-enzyme complex of cellulases and hemicellulases, is responsible for the degradation of plant cell walls. The xylanase CtXyl5A (Cthe_2193) is a multimodular arabinoxylanase which is one of the largest components of the Clostridium thermocellum cellulosome. The N-terminal catalytic domain of CtXyl5A, which is a member of glycoside hydrolase family 5 (GH5), is responsible for the hydrolysis of arabinoxylans. Appended after it are three noncatalytic carbohydrate-binding modules (CBMs), which belong to families 6 (CBM6), 13 (CBM13) and 62 (CBM62). In addition, CtXyl5A has a fibronectin type III-like (Fn3) module preceding the CBM62 and a type I dockerin (DOK) module following it which allows the enzyme to be integrated into the cellulosome through binding to a cohesin module of the protein scaffold CipA. Crystals of the pentamodular enzyme without the DOK module at the C-terminus, with the domain architecture CtGH5-CBM6-CBM13-Fn3-CBM62, have been obtained. The structure of this pentamodular xylanase has been determined by molecular replacement to a resolution of 2.64 Šusing coordinates of CtGH5-CBM6, Fn3 and CBM62 from the PDB as search models.


Assuntos
Clostridium thermocellum/enzimologia , Xilosidases/química , Cristalização , Cristalografia por Raios X , Xilosidases/isolamento & purificação
17.
Biochemistry ; 49(29): 6193-205, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20496884

RESUMO

The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored. Here we show that a family 35 CBM member (CBM35), designated CtCBM35-Gal, binds to alpha-D-galactose (Gal) and, within the context of the plant cell wall, targets the alpha-1,6-Gal residues of galactomannan but not the beta-D-Gal residues in xyloglucan. The crystal structure of CtCBM35-Gal reveals a canonical beta-sandwich fold. Site-directed mutagenesis studies showed that the ligand is accommodated within the loops that connect the two beta-sheets. Although the ligand binding site of the CBM displays significant structural similarity with calcium-dependent CBM35s that target uronic acids, subtle differences in the conformation of conserved residues in the ligand binding site lead to the loss of metal binding and uronate recognition. A model is proposed in which the orientation of the pair of aromatic residues that interact with the two faces of the Gal pyranose ring plays a pivotal role in orientating the axial O4 atom of the ligand toward Asn140, which is invariant in CBM35. The ligand recognition site of exo-CBM35s (CBM35-Gal and the uronic acid binding CBM35s) appears to overlap with that of CBM35-Man, which binds to the internal regions of mannan, a beta-polymer of mannose. Using site-directed mutagenesis, we show that although there is conservation of several functional residues within the binding sites of endo- and exo-CBM35s, the endo-CBM does not utilize Asn113 (equivalent to Asn140 in CBM35-Gal) in mannan binding, despite the importance of the equivalent residue in ligand recognition across the CBM35 and CBM6 landscape. The data presented in this report are placed within a wider phylogenetic context for the CBM35 family.


Assuntos
Proteínas de Bactérias/química , Clostridium thermocellum/enzimologia , Galactose/química , Mananas/química , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/química , Cristalografia por Raios X , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Plantas/química , Estrutura Secundária de Proteína
18.
Int J Biol Macromol ; 117: 890-901, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870811

RESUMO

The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a ß-1,3-glucanase belonging to cellulosomal complex. The gene encoding GH81 from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of ~82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ±â€¯0.12 mg/ml and Vmax, 109 ±â€¯1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. TLC and MALDI-TOF analysis of ß-1,3-glucan hydrolysed products released initially, showed ß-1,3-glucan-oligosaccharides degree of polymerization (DP) from DP2 to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Šresolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 ß-strands forming a four-domain structure viz. a ß-sandwich domain I at N-terminal, an α/ß-domain II, an (α/α)6 barrel domain III, and a small 5-stranded ß-sandwich domain IV.


Assuntos
Celulossomas/enzimologia , Clostridium thermocellum/citologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Especificidade por Substrato
19.
Sci Rep ; 7(1): 207, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28303020

RESUMO

There is a scarcity of data of zinc transporter-8 autoantibody (ZnT8A) on mixed populations such as Brazilian. Therefore, we evaluated the relevance of ZnT8A for type 1 diabetes (T1D) diagnosis and the role of ZnT8 coding gene (SLC30A8) in T1D predisposition. Patients with T1D (n = 629; diabetes duration = 11 (6-16) years) and 651 controls were genotyped for SLC30A8 rs16889462 and rs2466295 variants (BeadXpress platform). ZnT8 triple antibody was measured by ELISA; glutamic acid decarboxylase (GAD65A) and protein tyrosine phosphatase (IA-2A) autoantibodies by radioimmunoassay. RESULTS: Znt8A was detected in 68.7% of recent-onset T1D patients and 48.9% of the entire patient cohort, similar to GAD65A (68.3% and 47.2%) and IA-2A (64.8% and 42.4%) positivities respectively. ZnT8A was the only antibody in 8.4% of patients. Znt8A and IA2A frequencies and titers were independent of gender and ethnicity, whereas GAD65A titers were greater in females. The diabetes duration-dependent decline in ZnT8A frequency was similar to GAD65A and IA-2A. The SLC30A8 rs2466293 AG + GG genotypes were associated with T1D risk in non-European descents (56.2% × 42.9%; p = 0.018), and the GG genotype with higher ZnT8A titers in recent-onset T1D: 834.5 IU/mL (711.3-2190.0) × 281 IU/mL (10.7-726.8); p = 0.027. Conclusion ZnT8A detection increases T1D diagnosis rate even in mixed populations. SLC30A8 rs2466293 was associated with T1D predisposition in non-European descents.


Assuntos
Autoanticorpos/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Polimorfismo de Nucleotídeo Único , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/imunologia , Adolescente , Adulto , Brasil/etnologia , Estudos de Coortes , Diabetes Mellitus Tipo 1/etnologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Glutamato Descarboxilase/imunologia , Humanos , Masculino , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , População Branca/genética , Adulto Jovem
20.
Sci Rep ; 7(1): 5798, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724964

RESUMO

Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO42-, WO42- and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.


Assuntos
Desulfovibrio desulfuricans/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Tungstênio/metabolismo , Substituição de Aminoácidos , Calorimetria , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA