Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.

2.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
3.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37974505

RESUMO

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Assuntos
Aneuploidia , Transtornos Cromossômicos , Cromossomos Humanos Par 22 , Anormalidades do Olho , Cardiopatias Congênitas , Humanos , Estudos Retrospectivos , Hibridização in Situ Fluorescente , Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética
4.
Epilepsia ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953796

RESUMO

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

5.
Ann Neurol ; 89(2): 402-407, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33085104

RESUMO

Exome sequencing was performed in 2 unrelated families with progressive myoclonus epilepsy. Affected individuals from both families shared a rare, homozygous c.191A > G variant affecting a splice site in SLC7A6OS. Analysis of cDNA from lymphoblastoid cells demonstrated partial splice site abolition and the creation of an abnormal isoform. Quantitative reverse transcriptase polymerase chain reaction and Western blot showed a marked reduction of protein expression. Haplotype analysis identified a ~0.85cM shared genomic region on chromosome 16q encompassing the c.191A > G variant, consistent with a distant ancestor common to both families. Our results suggest that biallelic loss-of-function variants in SLC7A6OS are a novel genetic cause of progressive myoclonus epilepsy. ANN NEUROL 2021;89:402-407.


Assuntos
Epilepsias Mioclônicas Progressivas/genética , Peptídeo Hidrolases/genética , Sítios de Splice de RNA/genética , Adolescente , Ataxia/genética , Ataxia/fisiopatologia , Atrofia , Western Blotting , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , DNA Complementar , Eletroencefalografia , Feminino , Homozigoto , Humanos , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Epilepsias Mioclônicas Progressivas/diagnóstico por imagem , Epilepsias Mioclônicas Progressivas/fisiopatologia , Epilepsias Mioclônicas Progressivas/psicologia , Linhagem , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
6.
Am J Med Genet A ; 179(12): 2447-2453, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512363

RESUMO

Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).


Assuntos
Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Dedos/anormalidades , Estudos de Associação Genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Mutação Silenciosa , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Fenótipo
7.
J Transl Med ; 16(1): 23, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409514

RESUMO

BACKGROUND: Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. METHODS: Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. RESULTS: A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. CONCLUSIONS: Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/terapia , Epitopos/imunologia , Monitorização Imunológica , Neoplasias Pancreáticas/terapia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/secundário , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/secundário , Peptídeos/química , Peptídeos/imunologia , Resultado do Tratamento , Vacinação
8.
Genet Med ; 20(1): 98-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661489

RESUMO

PurposeThe study aimed at widening the clinical and genetic spectrum and assessing genotype-phenotype associations in FOXG1 syndrome due to FOXG1 variants.MethodsWe compiled 30 new and 53 reported patients with a heterozygous pathogenic or likely pathogenic variant in FOXG1. We grouped patients according to type and location of the variant. Statistical analysis of molecular and clinical data was performed using Fisher's exact test and a nonparametric multivariate test.ResultsAmong the 30 new patients, we identified 19 novel FOXG1 variants. Among the total group of 83 patients, there were 54 variants: 20 frameshift (37%), 17 missense (31%), 15 nonsense (28%), and 2 in-frame variants (4%). Frameshift and nonsense variants are distributed over all FOXG1 protein domains; missense variants cluster within the conserved forkhead domain. We found a higher phenotypic variability than previously described. Genotype-phenotype association revealed significant differences in psychomotor development and neurological features between FOXG1 genotype groups. More severe phenotypes were associated with truncating FOXG1 variants in the N-terminal domain and the forkhead domain (except conserved site 1) and milder phenotypes with missense variants in the forkhead conserved site 1.ConclusionsThese data may serve for improved interpretation of new FOXG1 sequence variants and well-founded genetic counseling.


Assuntos
Fatores de Transcrição Forkhead/genética , Estudos de Associação Genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Epilepsia ; 59(2): 389-402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315614

RESUMO

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Ataxia/complicações , Ataxia/genética , Ataxia/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/complicações , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Resultado do Tratamento , Ácido Valproico/uso terapêutico , Adulto Jovem
10.
Am J Med Genet A ; 173(1): 225-230, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27683074

RESUMO

Isolated defects of the mitochondrial respiratory complex II (succinate dehydrogenase, SDH) are rare, accounting for approximately 2% of all respiratory chain deficiency diagnoses. Here, we report clinical and molecular investigations of three family members with a heterozygous mutation in the large flavoprotein subunit SDHA previously described to cause complex II deficiency. The index patient presented with bilateral optic atrophy and ocular movement disorder, a progressive polyneuropathy, psychiatric involvement, and cardiomyopathy. Two of his children presented with cardiomyopathy and methylglutaconic aciduria in early childhood. The daughter deceased at the age of 7 months due to cardiac insufficiency. The 30-year old son presents with cardiomyopathy and developed bilateral optic atrophy in adulthood. Of the four nuclear encoded proteins composing complex II (SDHA, SDHB, SDHC, SDHD) and currently known assembly factors SDHAF1 and SDHAF2 mainly recessively inherited mutations have been described in SDHA, SDHB, SDHD, and SDHAF1 to be causative for mitochondrial disease phenotypes. This is the second report presenting autosomal dominant inheritance of a SDHA mutation.© 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Complexo II de Transporte de Elétrons/deficiência , Mutação , Fenótipo , Succinato Desidrogenase/genética , Adolescente , Alelos , Substituição de Aminoácidos , Biomarcadores , Códon , Análise Mutacional de DNA , Evolução Fatal , Feminino , Genes Mitocondriais , Genótipo , Humanos , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Succinato Desidrogenase/química
11.
Epilepsia ; 53(12): 2128-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23016767

RESUMO

PURPOSE: Sodium channel gene aberrations are associated with a wide range of seizure disorders, particularly Dravet syndrome. They usually consist of missense or truncating gene mutations or deletions. Duplications involving multiple genes encoding for different sodium channels are not widely known. This article summarizes the clinical, radiologic, and genetic features of patients with 2q24 duplication involving the sodium channel gene cluster. METHODS: A systematic review of the literature and report of two cases. KEY FINDINGS: Nine individuals with 2q24 duplication involving the sodium channel gene cluster are described (seven female, two male). All presented with severe seizures refractory to anticonvulsant drugs. Seizure onset was in the neonatal period in eight patients with SCN1A-involvement, in infancy in one patient with SCN2A and SCN3A, but no SCN1A involvement. Seizure activity decreased and eventually stopped at 5-20 months of age. Seizures recurred at the age of 3 years in the patient with SCN2A and SCN3A, but no SCN1A involvement. Eight patients had a poor neurodevelopmental outcome despite seizure freedom. SIGNIFICANCE: This article describes a distinct seizure disorder associated with a duplication of the sodium gene cluster on 2q24 described in otherwise healthy neonates and infants with severe, anticonvulsant refractory seizures and poor developmental outcome despite seizure freedom occurring at the age of 5-20 months.


Assuntos
Cromossomos Humanos Par 2/genética , Epilepsia/genética , Duplicação Gênica/genética , Predisposição Genética para Doença/genética , Canais de Sódio/genética , Hibridização Genômica Comparativa , Bases de Dados Factuais/estatística & dados numéricos , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino
12.
Epilepsia ; 53(8): 1387-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22612257

RESUMO

PURPOSE: Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks. METHODS: To overcome these diagnostic restrictions, we composed a panel of genes for Next Generation Sequencing containing the most relevant epilepsy genes and covering the most relevant epilepsy phenotypes known so far. With this method, 265 genes were analyzed per patient in a single step. We evaluated this panel on a pilot cohort of 33 index patients with concise epilepsy phenotypes or with a severe but unspecific seizure disorder covering both sporadic and familial cases. KEY FINDINGS: We identified presumed disease-causing mutations in 16 of 33 patients comprising sequence alterations in frequently as well as in less commonly affected genes. The detected aberrations encompassed known and unknown point mutations (SCN1A p.R222X, p. E289V, p.379R, p.R393H; SCN2A p.V208E; STXBP1 p.R122X; KCNJ10 p.L68P, p.I129V; KCTD7 p.L108M; KCNQ3 p.P574S; ARHGEF9 p.R290H; SMS p.F58L; TPP1 p.Q278R, p.Q422H; MFSD8 p.T294K), a putative splice site mutation (SCN1A c.693A> p.T/P231P) and small deletions (SCN1A p.F1330Lfs3X [1 bp]; MFSD8 p.A138Dfs10X [7 bp]). All mutations have been confirmed by conventional Sanger sequencing and, where possible, validated by parental testing and segregation analysis. In three patients with either Dravet syndrome or myoclonic epilepsy, we detected SCN1A mutations (p.R222X, p.P231P, p.R393H), even though other laboratories had previously excluded aberrations of this gene by Sanger sequencing or high-resolution melting analysis. SIGNIFICANCE: We have developed a fast and cost-efficient diagnostic screening method to analyze the genetic basis of epilepsies. We were able to detect mutations in patients with clear and with unspecific epilepsy phenotypes, to uncover the genetic basis of many so far unresolved cases with epilepsy including mutation detection in cases in which previous conventional methods yielded falsely negative results. Our approach thus proved to be a powerful diagnostic tool that may contribute to collecting information on both common and unknown epileptic disorders and in delineating associated phenotypes of less frequently mutated genes.


Assuntos
Epilepsia/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/diagnóstico , Feminino , Genes/genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Mutação/genética , Fenótipo , Análise de Sequência de DNA , Tripeptidil-Peptidase 1 , Adulto Jovem
13.
Eur J Med Genet ; 64(12): 104349, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619369

RESUMO

In collaboration with the German Angelman syndrome (AS) community, we developed a web-based AS Online Registry to congregate existing as well as future information and scientifically quantify observations made by parents, families and medical professionals. With its user-friendly design as well as its concise and multilingual questionnaire, the registry aims at families who had so far refrained from being recruited by other, more comprehensive and/or English-only, registries. Data can be entered by both parents/families and medical professionals. The study design allows for re-contacting individuals (e.g. to request additional information) enabling collection of longitudinal data. Since its launch in June 2020, more than 200 individuals with AS age 2 month to 83 years have registered and entered their clinical and genetic data. In addition to the German, Turkish, English, Dutch, Italian, Danish and Finnish versions of the registry, we aim for translation into further languages to enable international and user-friendly recruitment of AS individuals. This novel registry will allow for extensive genotype-phenotype correlations and facilitate sharing of de-identified information among clinicians, researchers as well as the Global AS Registry. Furthermore, the registry will allow for identification of individuals suitable for future clinical or pharmacologic trials according to particular genotypic and/or phenotypic properties.


Assuntos
Síndrome de Angelman/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Alemanha/epidemiologia , Humanos , Lactente , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Pesquisadores/estatística & dados numéricos , Adulto Jovem
14.
Neurol Genet ; 7(6): e641, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786481

RESUMO

BACKGROUND AND OBJECTIVES: To assess the current diagnostic yield of genetic testing for the progressive myoclonus epilepsies (PMEs) of an Italian series described in 2014 where Unverricht-Lundborg and Lafora diseases accounted for ∼50% of the cohort. METHODS: Of 47/165 unrelated patients with PME of indeterminate genetic origin, 38 underwent new molecular evaluations. Various next-generation sequencing (NGS) techniques were applied including gene panel analysis (n = 7) and/or whole-exome sequencing (WES) (WES singleton n = 29, WES trio n = 7, and WES sibling n = 4). In 1 family, homozygosity mapping was followed by targeted NGS. Clinically, the patients were grouped in 4 phenotypic categories: "Unverricht-Lundborg disease-like PME," "late-onset PME," "PME plus developmental delay," and "PME plus dementia." RESULTS: Sixteen of 38 (42%) unrelated patients reached a positive diagnosis, increasing the overall proportion of solved families in the total series from 72% to 82%. Likely pathogenic variants were identified in NEU1 (2 families), CERS1 (1 family), and in 13 nonfamilial patients in KCNC1 (3), DHDDS (3), SACS, CACNA2D2, STUB1, AFG3L2, CLN6, NAXE, and CHD2. Across the different phenotypic categories, the diagnostic rate was similar, and the same gene could be found in different phenotypic categories. DISCUSSION: The application of NGS technology to unsolved patients with PME has revealed a collection of very rare genetic causes. Pathogenic variants were detected in both established PME genes and in genes not previously associated with PME, but with progressive ataxia or with developmental encephalopathies. With a diagnostic yield >80%, PME is one of the best genetically defined epilepsy syndromes.

15.
Brain Commun ; 3(4): fcab245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909687

RESUMO

The vacuolar H+-ATPase is a large multi-subunit proton pump, composed of an integral membrane V0 domain, involved in proton translocation, and a peripheral V1 domain, catalysing ATP hydrolysis. This complex is widely distributed on the membrane of various subcellular organelles, such as endosomes and lysosomes, and plays a critical role in cellular processes ranging from autophagy to protein trafficking and endocytosis. Variants in ATP6V0A1, the brain-enriched isoform in the V0 domain, have been recently associated with developmental delay and epilepsy in four individuals. Here, we identified 17 individuals from 14 unrelated families with both with new and previously characterized variants in this gene, representing the largest cohort to date. Five affected subjects with biallelic variants in this gene presented with a phenotype of early-onset progressive myoclonus epilepsy with ataxia, while 12 individuals carried de novo missense variants and showed severe developmental and epileptic encephalopathy. The R740Q mutation, which alone accounts for almost 50% of the mutations identified among our cases, leads to failure of lysosomal hydrolysis by directly impairing acidification of the endolysosomal compartment, causing autophagic dysfunction and severe developmental defect in Caenorhabditis elegans. Altogether, our findings further expand the neurological phenotype associated with variants in this gene and provide a direct link with endolysosomal acidification in the pathophysiology of ATP6V0A1-related conditions.

16.
Eur J Med Genet ; 63(3): 103766, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31536827

RESUMO

Pontocerebellar hypoplasia type 6 (PCH6) is a rare infantile-onset progressive encephalopathy caused by biallelic mutations in RARS2 that encodes the mitochondrial arginine-tRNA synthetase enzyme (mtArgRS). The clinical presentation overlaps that of PEHO syndrome (Progressive Encephalopathy with edema, Hypsarrhythmia and Optic atrophy). The proband presented with severe intellectual disability, epilepsy with varying seizure types, optic atrophy, axial hypotonia, acquired microcephaly, dysmorphic features and progressive cerebral and cerebellar atrophy and delayed myelination on MRI. The presentation had resemblance to PEHO syndrome but sequencing of ZNHIT3 did not identify pathogenic variants. Subsequent whole genome sequencing revealed novel compound heterozygous variants in RARS2, a missense variant affecting a highly conserved amino acid and a frameshift variant with consequent degradation of the transcript resulting in decreased mtArgRS protein level confirming the diagnosis of PCH6. Features distinguishing the proband's phenotype from PEHO syndrome were later appearance of hypotonia and elevated lactate levels in blood and cerebrospinal fluid. On MRI the proband presented with more severe supratentorial atrophy and lesser degree of abnormal myelination than PEHO syndrome patients. The study highlights the challenges in clinical diagnosis of patients with neonatal and early infantile encephalopathies with overlapping clinical features and brain MRI findings.


Assuntos
Arginina-tRNA Ligase/genética , Cerebelo/diagnóstico por imagem , Atrofias Olivopontocerebelares/diagnóstico , Atrofias Olivopontocerebelares/genética , Alelos , Arginina-tRNA Ligase/metabolismo , Edema Encefálico/fisiopatologia , Cerebelo/patologia , Epilepsia/genética , Epilepsia/fisiopatologia , Mutação da Fase de Leitura , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética , Hipotonia Muscular/sangue , Hipotonia Muscular/líquido cefalorraquidiano , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/fisiopatologia , Proteínas Nucleares/genética , Atrofias Olivopontocerebelares/enzimologia , Atrofias Olivopontocerebelares/fisiopatologia , Atrofia Óptica/genética , Atrofia Óptica/fisiopatologia , Fenótipo , Convulsões/genética , Convulsões/fisiopatologia , Espasmos Infantis/fisiopatologia , Fatores de Transcrição/genética
17.
Ann Clin Transl Neurol ; 6(4): 655-668, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31019990

RESUMO

OBJECTIVE: FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous FOXG1 variants or chromosomal microaberrations in 14q12. The study aimed at assessing the scope of structural cerebral anomalies revealed by neuroimaging to delineate the genotype and neuroimaging phenotype associations. METHODS: We compiled 34 patients with a heterozygous (likely) pathogenic FOXG1 variant. Qualitative assessment of cerebral anomalies was performed by standardized re-analysis of all 34 MRI data sets. Statistical analysis of genetic, clinical and neuroimaging data were performed. We quantified clinical and neuroimaging phenotypes using severity scores. Telencephalic phenotypes of adult Foxg1+/- mice were examined using immunohistological stainings followed by quantitative evaluation of structural anomalies. RESULTS: Characteristic neuroimaging features included corpus callosum anomalies (82%), thickening of the fornix (74%), simplified gyral pattern (56%), enlargement of inner CSF spaces (44%), hypoplasia of basal ganglia (38%), and hypoplasia of frontal lobes (29%). We observed a marked, filiform thinning of the rostrum as recurrent highly typical pattern of corpus callosum anomaly in combination with distinct thickening of the fornix as a characteristic feature. Thickening of the fornices was not reported previously in FOXG1 syndrome. Simplified gyral pattern occurred significantly more frequently in patients with early truncating variants. Higher clinical severity scores were significantly associated with higher neuroimaging severity scores. Modeling of Foxg1 heterozygosity in mouse brain recapitulated the associated abnormal cerebral morphology phenotypes, including the striking enlargement of the fornix. INTERPRETATION: Combination of specific corpus callosum anomalies with simplified gyral pattern and hyperplasia of the fornices is highly characteristic for FOXG1 syndrome.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Fatores de Transcrição Forkhead/genética , Proteínas do Tecido Nervoso/genética , Animais , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/patologia , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Camundongos Transgênicos , Microcefalia/genética , Fenótipo , Síndrome de Rett/genética
18.
Clin Case Rep ; 6(2): 420-425, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29445489

RESUMO

We present a case of diaphanospondylodysostosis (DSD) which showed increased nuchal translucency at 1st trimester and missing ossification of the lower spine, short ribs with posterior gaps, and absent nasal bone in midtrimester. Autopsy revealed additionally bilateral nephroblastomatosis. Molecular genetic analysis showed a new mutation in the BMPER gene.

19.
Nat Commun ; 9(1): 2958, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054480

RESUMO

Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system. Using conditional knockout mice lacking Opa1 in neutrophils (Opa1N∆), we report that lack of OPA1 reduces the activity of mitochondrial electron transport complex I in neutrophils. This then causes a decline in adenosine-triphosphate (ATP) production through glycolysis due to lowered NAD+ availability. Additionally, we show that OPA1-dependent ATP production in these cells is required for microtubule network assembly and for the formation of neutrophil extracellular traps. Finally, we show that Opa1N∆ mice exhibit a reduced antibacterial defense capability against Pseudomonas aeruginosa.


Assuntos
Trifosfato de Adenosina/metabolismo , Armadilhas Extracelulares/metabolismo , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Glicólise/fisiologia , Neutrófilos/metabolismo , Actinas/metabolismo , Animais , Antibacterianos/farmacologia , Medula Óssea , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neutrófilos/citologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
20.
Neurology ; 86(10): 954-62, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26865513

RESUMO

OBJECTIVE: To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1 encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously reported patients. METHODS: We recruited newly diagnosed patients with STXBP1 mutations through an international network of clinicians and geneticists. Furthermore, we performed a systematic literature search to review the phenotypes of all previously reported patients. RESULTS: We describe the phenotypic features of 147 patients with STXBP1-E including 45 previously unreported patients with 33 novel STXBP1 mutations. All patients have intellectual disability (ID), which is mostly severe to profound (88%). Ninety-five percent of patients have epilepsy. While one-third of patients presented with Ohtahara syndrome (21%) or West syndrome (9.5%), the majority has a nonsyndromic early-onset epilepsy and encephalopathy (53%) with epileptic spasms or tonic seizures as main seizure type. We found no correlation between severity of seizures and severity of ID or between mutation type and seizure characteristics or cognitive outcome. Neurologic comorbidities including autistic features and movement disorders are frequent. We also report 2 previously unreported adult patients with prominent extrapyramidal features. CONCLUSION: De novo STXBP1 mutations are among the most frequent causes of epilepsy and encephalopathy. Most patients have severe to profound ID with little correlation among seizure onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be conceptualized as a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Proteínas Munc18/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Encefalopatias/diagnóstico , Encefalopatias/epidemiologia , Criança , Pré-Escolar , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA