Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673946

RESUMO

Inflammatory diseases commonly associated with humans are chronic inflammatory gastrointestinal diseases (CIGDs) [...].


Assuntos
Inflamação , Humanos , Inflamação/metabolismo , Gastroenteropatias/metabolismo , Gastroenteropatias/terapia , Gastroenteropatias/tratamento farmacológico , Animais
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298505

RESUMO

Inflammatory bowel diseases are chronic inflammation of the intestinal mucosa characterized by relapsing-remitting cycle periods of variable duration. Infliximab (IFX) was the first monoclonal antibody used for the treatment of Crohn's disease and ulcerative colitis (UC). High variability between treated patients and loss of IFX efficiency over time support the further development of drug therapy. An innovative approach has been suggested based on the presence of orexin receptor (OX1R) in the inflamed human epithelium of UC patients. In that context, the aim of this study was to compare, in a mouse model of chemically induced colitis, the efficacy of IFX compared to the hypothalamic peptide orexin-A (OxA). C57BL/6 mice received 3.5% dextran sodium sulfate (DSS) in drinking water for 5 days. Since the inflammatory flare was maximal at day 7, IFX or OxA was administered based on a curative perspective at that time for 4 days using intraperitoneal injection. Treatment with OxA promoted mucosal healing and decreased colonic myeloperoxidase activity, circulating concentrations of lipopolysaccharide-binding protein, IL-6 and tumor necrosis factor alpha (TNFα) and decreased expression of genes encoding cytokines in colonic tissues with better efficacy than IFX allowing for more rapid re-epithelization. This study demonstrates the comparable anti-inflammatory properties of OxA and IFX and shows that OxA is efficient in promoting mucosal healing, suggesting that OxA treatment is a promising new biotherapy.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Humanos , Infliximab/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos
3.
J Neuroinflammation ; 16(1): 64, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894198

RESUMO

BACKGROUND: Orexins (hypocretins, Hcrt) A and B are GPCR-binding hypothalamic neuropeptides known to regulate sleep/wake states and feeding behavior. A few studies have shown that orexin A exhibits anti-inflammatory and neuroprotective properties, suggesting that it might provide therapeutic effects in inflammatory and neurodegenerative diseases like multiple sclerosis (MS). In MS, encephalitogenic Th1 and Th17 cells trigger an inflammatory response in the CNS destroying the myelin sheath. Here, we investigated the effects of peripheral orexin A administration to mice undergoing experimental autoimmune encephalomyelitis (EAE), a widely used model of MS. METHODS: Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55 in CFA. Mice were treated intraperitoneally for five consecutive days with either PBS or 300 µg of orexin A starting at a moderate EAE score. Molecular, cellular, and histological analysis were performed by real-time PCR, ELISA, flow cytometry, and immunofluorescence. RESULTS: Orexin A strongly ameliorated ongoing EAE, limiting the infiltration of pathogenic CD4+ T lymphocytes, and diminishing chemokine (MCP-1/CCL2 and IP-10/CXCL10) and cytokine (IFN-γ (Th1), IL-17 (Th17), TNF-α, IL-10, and TGF-ß) expressions in the CNS. Moreover, orexin A treatment was neuroprotective, decreasing demyelination, astrogliosis, and microglial activation. Despite its strong local therapeutic effects, orexin A did not impair peripheral draining lymph node cell proliferation and Th1/Th17 cytokine production in response to MOG35-55 in vitro. CONCLUSIONS: Peripherally-administered orexin A ameliorated EAE by reducing CNS neuroinflammation. These results suggest that orexins may represent new therapeutic candidates that should be further investigated for MS treatment.


Assuntos
Anti-Inflamatórios/administração & dosagem , Encefalomielite Autoimune Experimental/tratamento farmacológico , Orexinas/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fatores de Tempo
4.
Pediatr Res ; 85(3): 384-389, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420707

RESUMO

BACKGROUND: Congenital disorders of glycosylation (CDG) includes ALG8 deficiency, a protein N-glycosylation defect with a broad clinical spectrum. If most of the 15 previously reported patients present an early-onset multisystem severe disease and early death, three patients including the cas princeps, present long-term survival and less severe symptoms. METHODS: In order to further characterize ALG8-CDG, two new ALG8 patients are described and mRNA analyses of the ALG8-CDG cas princeps were effected. RESULTS: One new patient exhibited a hepato-intestinal and neurological phenotype with two novel variants (c.91A > C p.Thr31Pro; c.139dup p.Thr47Asnfs*12). The other new patient, homozygous for a known variant (c.845C > T p.Ala282Val), presented a neurological phenotype with epilepsy, intellectual disability and retinis pigmentosa. The cas princeps ALG8-CDG patient was reported to have two heterozygous frameshift variants predicted to be without activity. We now described a novel ALG8 transcript variant in this patient and the 3D model of the putative encoded protein reveals no major difference with that of the normal ALG8 protein. CONCLUSION: The description of the two new ALG8 patients affirms that ALG8-CDG is a severe disease. In the cas princeps, as the originally described frameshift variants are degraded, the novel variant is promoted and could explain a milder phenotype.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Glucosiltransferases/genética , Processamento Alternativo , Emetina/farmacologia , Éxons , Feminino , Mutação da Fase de Leitura , França , Variação Genética , Glicosilação , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Fenótipo , Retinose Pigmentar/genética , Resultado do Tratamento
5.
J Hepatol ; 66(5): 930-941, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28040548

RESUMO

BACKGROUND & AIMS: In immune cells, constitutively and acutely produced type I interferons (IFNs) engage autocrine/paracrine signaling pathways to induce IFN-stimulated genes (ISGs). Enhanced activity of IFN signaling pathways can cause excessive inflammation and tissue damage. We aimed to investigate ISG expression in systemic immune cells from patients with decompensated alcoholic cirrhosis, and its association with outcome. METHODS: Peripheral blood mononuclear cells (PBMCs) from patients and heathy subjects were stimulated or not with lipopolysaccharide (LPS, an IFN inducer) or increasing concentrations of IFN-ß. The expression of 48 ISGs and ten "non-ISG" inflammatory cytokines were analyzed using RT-qPCR. RESULTS: We developed an 8-ISG signature (IFN score) assessing ISG expression. LPS-stimulated ISG induction was significantly lower in PBMCs from patients with cirrhosis compared to healthy controls. Non-ISGs, however, showed higher induction. Lower induction of ISGs by LPS was not due to decreased IFN production by cirrhotic PBMCs or neutralization of secreted IFN, but a defective PBMC response to IFN. This defect was at least in part due to decreased constitutive ISG expression. Patients with the higher baseline IFN scores and ISG levels had the higher risk of death. At baseline, "non-ISG" cytokines did not correlate with outcome. CONCLUSIONS: PBMCs from patients with decompensated alcoholic cirrhosis exhibit downregulated ISG expression, both constitutively and after an acute stimulus. Our finding that higher baseline PBMC ISG expression was associated with higher risk of death, suggests that constitutive ISG expression in systemic immune cells contributes to the prognosis of alcoholic cirrhosis. LAY SUMMARY: Enhanced activity of IFN signaling pathways can cause excessive inflammation and tissue damage. Here we show that peripheral blood mononuclear cells (PBMCs) from patients with alcoholic cirrhosis exhibit a defect in interferon-stimulated genes (ISGs). We found that higher baseline ISG expression in PBMCs was associated with higher risk of death, revealing a probable contribution of ISG expression in immune cells to the outcome of alcoholic cirrhosis.


Assuntos
Interferon Tipo I/fisiologia , Leucócitos Mononucleares/imunologia , Cirrose Hepática Alcoólica/imunologia , Transdução de Sinais/fisiologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Cirrose Hepática Alcoólica/etiologia , Masculino , Pessoa de Meia-Idade , Poli I-C/farmacologia
6.
J Biol Chem ; 290(46): 27816-28, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26405036

RESUMO

The main target of cAMP is PKA, the main regulatory subunit of which (PRKAR1A) presents mutations in two genetic disorders: acrodysostosis and Carney complex. In addition to the initial recurrent mutation (R368X) of the PRKAR1A gene, several missense and nonsense mutations have been observed recently in acrodysostosis with hormonal resistance. These mutations are located in one of the two cAMP-binding domains of the protein, and their functional characterization is presented here. Expression of each of the PRKAR1A mutants results in a reduction of forskolin-induced PKA activation (measured by a reporter assay) and an impaired ability of cAMP to dissociate PRKAR1A from the catalytic PKA subunits by BRET assay. Modeling studies and sensitivity to cAMP analogs specific for domain A (8-piperidinoadenosine 3',5'-cyclic monophosphate) or domain B (8-(6-aminohexyl)aminoadenosine-3',5'-cyclic monophosphate) indicate that the mutations impair cAMP binding locally in the domain containing the mutation. Interestingly, two of these mutations affect amino acids for which alternative amino acid substitutions have been reported to cause the Carney complex phenotype. To decipher the molecular mechanism through which homologous substitutions can produce such strikingly different clinical phenotypes, we studied these mutations using the same approaches. Interestingly, the Carney mutants also demonstrated resistance to cAMP, but they expressed additional functional defects, including accelerated PRKAR1A protein degradation. These data demonstrate that a cAMP binding defect is the common molecular mechanism for resistance of PKA activation in acrodysosotosis and that several distinct mechanisms lead to constitutive PKA activation in Carney complex.


Assuntos
Complexo de Carney/enzimologia , Complexo de Carney/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Disostoses/enzimologia , Disostoses/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/genética , Substituição de Aminoácidos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Códon sem Sentido , Colforsina/farmacologia , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Hormônio Paratireóideo/farmacologia , Estrutura Terciária de Proteína , Tireotropina/farmacologia , Transcrição Gênica
7.
N Engl J Med ; 364(23): 2218-26, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21651393

RESUMO

The skeletal dysplasia characteristic of acrodysostosis resembles the Albright's hereditary osteodystrophy seen in patients with pseudohypoparathyroidism type 1a, but defects in the α-stimulatory subunit of the G-protein (GNAS), the cause of pseudohypoparathyroidism type 1a, are not present in patients with acrodysostosis. We report a germ-line mutation in the gene encoding PRKAR1A, the cyclic AMP (cAMP)-dependent regulatory subunit of protein kinase A, in three unrelated patients with acrodysostosis and resistance to multiple hormones. The mutated subunit impairs the protein kinase A response to stimulation by cAMP; this explains our patients' hormone resistance and the similarities of their skeletal abnormalities with those observed in patients with pseudohypoparathyroidism type 1a.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mutação em Linhagem Germinativa , Hormônios/metabolismo , Adolescente , Criança , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Resistência a Medicamentos , Disostoses/genética , Disostoses/metabolismo , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Hormônio Paratireóideo/metabolismo , Linhagem , Transcrição Gênica , Adulto Jovem
8.
Med Sci (Paris) ; 30(1): 47-54, 2014 Jan.
Artigo em Francês | MEDLINE | ID: mdl-24472459

RESUMO

The primary function of peptide N-glycanase (PNGase) is thought to be the deglycosylation of endoplasmic reticulum associated degradation (ERAD) substrates. However, inhibition of PNGase appears to have little effect upon the destruction rate of many ERAD substrates, and recent data demonstrate deglycosylation-independent functions for PNGase. Whatever the roles of PNGase turn out to be, the identification of a patient presenting with PNGase deficiency will advance our understanding of the importance of this multifunctional protein in human physiology.


Assuntos
Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/fisiologia , Sequência de Aminoácidos , Animais , Expressão Gênica , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
9.
FASEB J ; 26(5): 2060-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22291440

RESUMO

Vasoactive intestinal peptide (VIP) plays a major role in pathophysiology. Our previous studies demonstrated that the VIP sequence 6-28 interacts with the N-terminal ectodomain (N-ted) of its receptor, VPAC1. Probes for VIP and receptor antagonist PG97-269 were synthesized with a photolabile residue/Bpa at various positions and used to explore spatial proximity with VPAC1. PG97-269 probes with Bpa at position 0, 6, and 24 behaved as high-affinity receptor antagonists (K(i)=12, 9, and 7 nM, respectively). Photolabeling experiments revealed that the [Bpa(0)]-VIP probe was in physical contact with VPAC1 Q(135), while [Bpa(0)]-PG97-269 was covalently bound to G(62) residue of N-ted, indicating different binding sites. In contrast, photolabeling with [Bpa(6)]- and [Bpa(24)]-PG97-269 showed that the distal domains of PG97-269 interacted with N-ted, as we previously showed for VIP. Substitution with alanine of the K(143), T(144), and T(147) residues located in the first transmembrane domain of VPAC1 induced a loss of receptor affinity (IC(50)=1035, 874, and 2070 nM, respectively), and pharmacological studies using VIP2-28 indicated that these three residues play an important role in VPAC1 interaction with the first histidine residue of VIP. These data demonstrate that VIP and PG97-269 bind to distinct domains of VPAC1.


Assuntos
Peptídeos/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Peptídeos/química , Marcadores de Fotoafinidade , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Homologia de Sequência de Aminoácidos
10.
Trends Biochem Sci ; 33(7): 314-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18555686

RESUMO

The class B family of G-protein-coupled receptors (GPCRs) regulates essential physiological functions such as exocrine and endocrine secretions, feeding behaviour, metabolism, growth, and neuro- and immuno-modulations. These receptors are activated by endogenous peptide hormones including secretin, glucagon, vasoactive intestinal peptide, corticotropin-releasing factor and parathyroid hormone. We have identified a common structural motif that is encoded in all class B GPCR-ligand N-terminal sequences. We propose that this local structure, a helix N-capping motif, is formed upon receptor binding and constitutes a key element underlying class B GPCR activation. The folded backbone conformation imposed by the capping structure could serve as a template for a rational design of drugs targeting class B GPCRs in several diseases.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Front Endocrinol (Lausanne) ; 13: 931970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966051

RESUMO

At the end of the 20th century, two new neuropeptides (Orexin-A/hypocretin-1 and Orexin-B/hypocretins-2) expressed in hypothalamus as a prepro-orexins precursor, were discovered. These two neuropeptides interacted with two G protein-coupled receptor isoforms named OX1R and OX2R. The orexins/OX receptors system play an important role in the central and peripheral nervous system where it controls wakefulness, addiction, reward seeking, stress, motivation, memory, energy homeostasis, food intake, blood pressure, hormone secretions, reproduction, gut motility and lipolysis. Orexins and their receptors are involved in pathologies including narcolepsy type I, neuro- and chronic inflammation, neurodegenerative diseases, metabolic syndrome, and cancers. Associated with these physiopathological roles, the extensive development of pharmacological molecules including OXR antagonists, has emerged in association with the determination of the structural properties of orexins and their receptors. Moreover, the identification of OX1R expression in digestive cancers encompassing colon, pancreas and liver cancers and its ability to trigger mitochondrial apoptosis in tumoral cells, indicate a new putative therapeutical action of orexins and paradoxically OXR antagonists. The present review focuses on structural and anti-tumoral aspects of orexins and their receptors.


Assuntos
Neoplasias , Neuropeptídeos , Humanos , Neoplasias/tratamento farmacológico , Neuropeptídeos/metabolismo , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/metabolismo
12.
Biomedicines ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203615

RESUMO

Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.

13.
Front Oncol ; 12: 904327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747788

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-associated death in the West. This type of cancer has a very poor prognosis notably due to the development of chemoresistance when treatments including gemcitabine and Abraxane (Nab-paclitaxel) were prescribed. The identification of new treatment circumventing this chemoresistance represents a key challenge. Previous studies demonstrated that the activation of orexin receptor type 1 (OX1R), which was ectopically expressed in PDAC, by its natural ligand named orexin-A (OxA), led to anti-tumoral effect resulting in the activation of mitochondrial pro-apoptotic mechanism. Here, we demonstrated that OxA inhibited the pancreatic cancer cell (AsPC-1) growth and inhibited the tumor volume in preclinical models as effectively as gemcitabine and Nab-paclitaxel. Moreover, the combination therapy including OxA plus gemcitabine or OxA plus Nab-paclitaxel was additive on the inhibition of cancer cell growth and tumor development. More importantly, the treatment by OxA of chemoresistant tumors to gemcitabine or Nab-paclitaxel obtained by successive xenografts in mice revealed that OxA was able to induce a strong inhibition of tumor development, whereas no OxA resistance was identified in tumors. The OX1R/OxA system might be an innovative and powerful alternative treatment of chemoresistant PDAC.

14.
FASEB J ; 24(11): 4585-98, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20667981

RESUMO

The chemokine CX3CL1 is expressed as a membrane protein that forms a potent adhesive pair with its unique receptor CX3CR1. This receptor has 3 natural variants, V249-T280 (VT), I249-T280 (IT), and I249-M280 (IM), whose relative frequencies are significantly associated with the incidence of various inflammatory diseases. To assess the adhesive potency of CX3CR1 and the molecular diversity of its variants, we assayed their clustering status and their possible structural differences by fluorescence/bioluminescence resonance energy transfer (FRET or BRET) techniques. FRET assays by flow cytometry showed that the CX3CR1 variants cluster, in comparison with appropriate controls. BRET assays showed low nonspecific signals for VT and IT variants and high specific signals for IM, and thus pointed out a structural difference in this variant. We used molecular modeling to show how natural point mutations of CX3CR1 affect the packing of the 6th and 7th helices of this G-protein coupled receptor. Moreover, we found that the BRET technique is sensitive enough to detect these tiny changes. Consistently with our previous finding that CX3CL1 aggregates, our data here indicate that CX3CR1 clustering may contribute to the adhesiveness of the CX3CL1-CX3CR1 pair and may thus represent a new target for anti-inflammatory therapies.


Assuntos
Quimiocina CX3CL1/química , Quimiocina CX3CL1/genética , Transferência Ressonante de Energia de Fluorescência , Variação Genética , Modelos Moleculares , Linhagem Celular , Citometria de Fluxo , Humanos , Polimorfismo Genético , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes
15.
World J Gastroenterol ; 27(44): 7582-7596, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34908800

RESUMO

Hypothalamic neuropeptides named hypocretin/orexins which were identified in 1998 regulate critical functions such as wakefulness in the central nervous system. These past 20 years had revealed that orexins/receptors system was also present in the peripheral nervous system where they participated to the regulation of multiple functions including blood pressure regulation, intestinal motility, hormone secretion, lipolyze and reproduction functions. Associated to these peripheral functions, it was found that orexins and their receptors were involved in various diseases such as acute/chronic inflammation, metabolic syndrome and cancers. The present review suggests that orexins or the orexin neural circuitry represent potential therapeutic targets for the treatment of multiple pathologies related to inflammation including intestinal bowel disease, multiple sclerosis and septic shock, obesity and digestive cancers.


Assuntos
Neoplasias Gastrointestinais , Receptores de Neuropeptídeos , Humanos , Inflamação/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade/tratamento farmacológico , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G
16.
Hum Mol Genet ; 17(18): 2766-75, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559376

RESUMO

PTHR1-signaling pathway is critical for the regulation of endochondral ossification. Thus, abnormalities in genes belonging to this pathway could potentially participate in the pathogenesis of Ollier disease/Maffucci syndrome, two developmental disorders defined by the presence of multiple enchondromas. In agreement, a functionally deleterious mutation in PTHR1 (p.R150C) was identified in enchondromas from two of six unrelated patients with enchondromatosis. However, neither the p.R150C mutation (26 tumors) nor any other mutation in the PTHR1 gene (11 patients) could be identified in another study. To further define the role of PTHR1-signaling pathway in Ollier disease and Maffucci syndrome, we analyzed the coding sequences of four genes (PTHR1, IHH, PTHrP and GNAS1) in leucocyte and/or tumor DNA from 61 and 23 patients affected with Ollier disease or Maffucci syndrome, respectively. We identified three previously undescribed missense mutations in PTHR1 in patients with Ollier disease at the heterozygous state. Two mutations (p.G121E, p.A122T) were present only in enchondromas, and one (p.R255H) in both enchondroma and leukocyte DNA. Assessment of receptor function demonstrated that these three mutations impair PTHR1 function by reducing either the affinity of the receptor for PTH or the receptor expression at the cell surface. These mutations were not found in DNA from 222 controls. Including our data, PTHR1 functionally deleterious mutations have now been identified in five out 31 enchondromas from Ollier patients. These findings provide further support for the idea that heterozygous mutations in PTHR1 that impair receptor function participate in the pathogenesis of Ollier disease in some patients.


Assuntos
Encondromatose/genética , Encondromatose/fisiopatologia , Mutação de Sentido Incorreto , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Adolescente , Adulto , Animais , Células CHO , Células COS , Criança , Chlorocebus aethiops , Condroma/genética , Condroma/metabolismo , Condroma/fisiopatologia , Estudos de Coortes , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Encondromatose/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Hormônio Paratireóideo/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptor Tipo 1 de Hormônio Paratireóideo/química , Transdução de Sinais
17.
FASEB J ; 23(12): 4069-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19661287

RESUMO

The orexin neuropeptides promote robust apoptosis in cancer cells. We have recently shown that the 7-transmembrane-spanning orexin receptor OX1R mediates apoptosis through an original mechanism. OX1R is equipped with a tyrosine-based inhibitory motif ITIM, which is tyrosine-phosphorylated on receptor activation, allowing the recruitment and activation of the tyrosine phosphatase SHP-2, leading to apoptosis. We show here that another motif, immunoreceptor tyrosine-based switch motif (ITSM), is present in OX1R and is mandatory for OX1R-mediated apoptosis. This conclusion is based on the following observations: 1) a canonical ITSM sequence is present in the first intracellular loop of OX1R; 2) mutation of Y(83) to F within ITSM abolished OX1R-mediated apoptosis but did not alter orexin-induced inositol phosphate formation or calcium transient via coupling of OX1R to G(q) protein; 3) mutation of Y(83) to F further abolished orexin-induced tyrosine phosphorylation in ITSM and subsequent recruitment of SHP-2 by the receptor. Finally, we developed a structural model of OX1R showing that the spatial localization of phosphotyrosines in ITSM and ITIM in OX1R is compatible with their interaction with the two SH2 domains of SHP-2. These data represent the first evidence for a functional role of an ITSM in a 7-transmembrane-spanning receptor.


Assuntos
Apoptose/fisiologia , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Cricetinae , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Neuropeptídeos/metabolismo , Receptores de Orexina , Orexinas , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética , Proteínas Recombinantes
18.
Mol Endocrinol ; 22(1): 147-55, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17885205

RESUMO

The neuropeptide vasoactive intestinal peptide (VIP) strongly impacts on human pathophysiology and does so through interaction with class II G protein-coupled receptors. We characterized the C terminus-binding site of VIP in the N-terminal ectodomain (N-ted) of the human VPAC1 receptor: 1) The probe [(125)I-Bpa(28)]VIP in which the C-terminal residue (Asn(28)) is substituted by a photoreactive p-benzoyl-l-Phe (Bpa) was used to photolabel the receptor. After receptor cleavage and Edman sequencing, it was shown that Asn(28) of VIP is in contact with Lys(127) in the receptor N-ted. Taking into account previous data, it follows that the C-terminal and central parts of VIP from Asn(28) to Phe(6) lie in the N-ted. 2) A three-dimensional model of the N-ted was constructed, the fold being identified as a Sushi domain with two antiparallel beta-sheets and three disulfide bonds. The nuclear magnetic resonance structure of VIP was then docked into this model by taking into account the constraint provided by photoaffinity experiments with [(125)I-Bpa(28)]VIP. It appeared that VIP runs parallel to the beta3-beta4 antiparallel sheets. 3) We performed molecular dynamic simulations over 14 nsec of the complex between VIP and receptor N-ted and the free N-ted. The structural model of the free N-ted is stable, and VIP tends to further stabilize the N-ted structure more especially in the loops connecting the beta-sheets. These structural studies provide a detailed molecular understanding of the VIP-receptor interaction.


Assuntos
Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/química , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/química , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Sítios de Ligação , Células CHO , Simulação por Computador , Cricetinae , Cricetulus , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-31695678

RESUMO

Orexins [orexin-A (OXA) and orexin-B (OXB)] are two isoforms of neuropeptides produced by the hypothalamus. The main biological actions of orexins, focused on the central nervous system, are to control the sleep/wake process, appetite and feeding, energy homeostasis, drug addiction, and cognitive processes. These effects are mediated by two G protein-coupled receptor (GPCR) subtypes named OX1R and OX2R. In accordance with the synergic and dynamic relationship between the nervous and immune systems, orexins also have neuroprotective and immuno-regulatory (i.e., anti-inflammatory) properties. The present review gathers recent data demonstrating that orexins may have a therapeutic potential in several pathologies with an immune component including multiple sclerosis, Alzheimer's disease, narcolepsy, obesity, intestinal bowel diseases, septic shock, and cancers.

20.
Neurobiol Dis ; 32(1): 66-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18652895

RESUMO

Cisplatin is a chemotherapeutic agent whose use is limited by side effects including neuropathies. In proliferating cells, toxic action of cisplatin is based on DNA interactions, while, in quiescent cells, it can induce apoptosis by interacting with proteins. In the present study, we compared cytotoxic mechanisms activated by cisplatin in primate and rodent neurons and in ovary cells in order to determine whether the anti-apoptotic peptide PACAP could selectively reduce neurotoxicity. In quiescent neurons, JNK and sphingomyelinase inhibitors blocked cisplatin-induced cell death. Toxicity was associated with DNA laddering, caspase-3 and -9 activations and Bax induction. These effects were prevented by PACAP. In proliferating cells, cisplatin activated caspase-8 but had no effect on caspase-9. PACAP exerted no protective effect. These data indicate that cisplatin activates distinct apoptotic pathways in quiescent neurons and proliferating cells and that PACAP may reduce neurotoxicity of cisplatin without affecting its chemotherapeutic efficacy.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Cisplatino/antagonistas & inibidores , Proteínas Mitocondriais/fisiologia , Neurônios/fisiologia , Ovário/citologia , Ovário/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células CHO , Callithrix , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cisplatino/uso terapêutico , Cisplatino/toxicidade , Cricetinae , Cricetulus , Feminino , Macaca fascicularis , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ovário/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA