RESUMO
The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.
Assuntos
Nanopartículas , Catálise , Hidrogenação , Nanopartículas/química , Oxirredução , ÓxidosRESUMO
Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.