RESUMO
OBJECTIVES: Patients at risk of adverse effects related to positive fluid balance could benefit from fluid intake optimization. Less attention is paid to nonresuscitation fluids. We aim to evaluate the heterogeneity of fluid intake at the initial phase of resuscitation. DESIGN: Prospective multicenter cohort study. SETTING: Thirty ICUs across France and one in Spain. PATIENTS: Patients requiring vasopressors and/or invasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: All fluids administered by vascular or enteral lines were recorded over 24 hours following admission and were classified in four main groups according to their predefined indication: fluids having a well-documented homeostasis goal (resuscitation fluids, rehydration, blood products, and nutrition), drug carriers, maintenance fluids, and fluids for technical needs. Models of regression were constructed to determine fluid intake predicted by patient characteristics. Centers were classified according to tertiles of fluid intake. The cohort included 296 patients. The median total volume of fluids was 3546 mL (interquartile range, 2441-4955 mL), with fluids indisputably required for body fluid homeostasis representing 36% of this total. Saline, glucose-containing high chloride crystalloids, and balanced crystalloids represented 43%, 27%, and 16% of total volume, respectively. Whatever the class of fluids, center of inclusion was the strongest factor associated with volumes. Compared with the first tertile, the difference between the volume predicted by patient characteristics and the volume given was +1.2 ± 2.0 L in tertile 2 and +3.0 ± 2.8 L in tertile 3. CONCLUSIONS: Fluids indisputably required for body fluid homeostasis represent the minority of fluid intake during the 24 hours after ICU admission. Center effect is the strongest factor associated with the volume of fluids. Heterogeneity in practices suggests that optimal strategies for volume and goals of common fluids administration need to be developed.
Assuntos
Estado Terminal , Hidratação , Humanos , Estudos Prospectivos , Estado Terminal/terapia , Estudos de Coortes , Hidratação/efeitos adversos , Soluções Cristaloides , RessuscitaçãoRESUMO
Background: Several studies report an increased susceptibility to SARS-CoV-2 infection in cancer patients. However, data in the intensive care unit (ICU) are scarce. Research Question: We aimed to investigate the association between active cancer and mortality among patients requiring organ support in the ICU. Study Design and Methods: In this ambispective study encompassing 17 hospitals in France, we included all adult active cancer patients with SARS-CoV-2 infection requiring organ support and admitted in ICU. For each cancer patient, we included 3 non cancer patients as controls. Patients were matched at the same ratio using the inverse probability weighting approach based on a propensity score assessing the probability of cancer at admission. Mortality at day 60 after ICU admission was compared between cancer patients and non-cancer patients using primary logistic regression analysis and secondary multivariable analyses. Results: Between March 12, 2020 and March 8, 2021, 2608 patients were admitted with SARS-CoV-2 infection in our study, accounting for 2.8% of the total population of patients with SARS-CoV-2 admitted in all French ICUs within the same period. Among them, 105 (n=4%) presented with cancer (51 patients had hematological malignancy and 54 patients had solid tumors). 409 of 420 patients were included in the propensity score matching process, of whom 307 patients in the non-cancer group and 102 patients in the cancer group. 145 patients (35%) died in the ICU at day 60, 59 (56%) with cancer and 86 (27%) without cancer. In the primary logistic regression analysis, the odds ratio for death associated to cancer was 2.3 (95%CI 1.24 - 4.28, p=0.0082) higher for cancer patients than for a non-cancer patient at ICU admission. Exploratory multivariable analyses showed that solid tumor (OR: 2.344 (0.87-6.31), p=0.062) and hematological malignancies (OR: 4.144 (1.24-13.83), p=0.062) were independently associated with mortality. Interpretation: Patients with cancer and requiring ICU admission for SARS-CoV-2 infection had an increased mortality, hematological malignancy harboring the higher risk in comparison to solid tumors.