Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nature ; 574(7778): 390-393, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597960

RESUMO

Transition-metal complexes are widely used in the physical and biological sciences. They have essential roles in catalysis, synthesis, materials science, photophysics and bioinorganic chemistry. Our understanding of transition-metal complexes originates from Alfred Werner's realization that their three-dimensional shape influences their properties and reactivity1, and the intrinsic link between shape and electronic structure is now firmly underpinned by molecular-orbital theory2-5. Despite more than a century of advances in this field, the geometries of transition-metal complexes remain limited to a few well-understood examples. The archetypal geometries of six-coordinate transition metals are octahedral and trigonal prismatic, and although deviations from ideal bond angles and bond lengths are frequent6, alternative parent geometries are extremely rare7. The hexagonal planar coordination environment is known, but it is restricted to condensed metallic phases8, the hexagonal pores of coordination polymers9, or clusters that contain more than one transition metal in close proximity10,11. Such a geometry had been considered12,13 for [Ni(PtBu)6]; however, an analysis of the molecular orbitals suggested that this complex is best described as a 16-electron species with a trigonal planar geometry14. Here we report the isolation and structural characterization of a simple coordination complex in which six ligands form bonds with a central transition metal in a hexagonal planar arrangement. The structure contains a central palladium atom surrounded by three hydride and three magnesium-based ligands. This finding has the potential to introduce additional design principles for transition-metal complexes, with implications for several scientific fields.


Assuntos
Complexos de Coordenação/química , Metais/química , Complexos de Coordenação/isolamento & purificação , Ciência dos Materiais , Conformação Molecular , Elementos de Transição/química
2.
J Am Chem Soc ; 146(6): 4252-4259, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38303600

RESUMO

The oxidative addition of sp2 C-H bonds of alkenes to single-site transition-metal complexes is complicated by the competing π-coordination of the C═C double bond, limiting the examples of this type of reactivity and onward applications. Here, we report the C-H activation of styrenes by a well-defined bimetallic Fe-Al complex. These reactions are highly selective, resulting in the (E)-ß-metalation of the alkene. For this bimetallic system, alkene binding appears to be essential for the reaction to occur. Experimental and computational insights suggest an unusual reaction pathway in which a (2 + 2) cycloaddition intermediate is directly converted into the hydrido vinyl product via an intramolecular sp2 C-H bond activation across the two metals. The key C-H cleavage step proceeds through a highly asynchronous transition state near the boundary between a concerted and a stepwise mechanism influenced by the resonance stabilization ability of the aryl substituent. The metalated alkenes can be further functionalized, which has been demonstrated by the (E)-selective phosphination of the employed styrenes.

3.
Angew Chem Int Ed Engl ; 63(14): e202319626, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348749

RESUMO

Addition of CO to a tetrametallic magnesium hydride cluster results in both carbon-carbon bond formation and deoxygenation to generate an acetaldehyde enolate [C2OH3]- which remains coordinated to the cluster. To the best of our knowledge, this is the first example of formation of an isolable complex containing an [C2OH3]- fragment from reaction of CO with a metal hydride, and the first example of CO homologation and deoxygenation at a main group metal. DFT studies suggest that key steps in the mechanism involve nucleophilic attack of an oxymethylene on a formyl ligand to generate an unstable [C2O2H3]3- fragment, which undergoes subsequent deoxygenation.

4.
Angew Chem Int Ed Engl ; 63(5): e202317550, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069591

RESUMO

In this paper, we report BF3 ⋅ OEt2 as a catalyst to shuttle equivalents of HF from a fluoroalkane to an alkyne. Reactions of terminal and internal aliphatic alkynes led to formation of difluoroalkane products, while diarylalkynes can be selectively converted into fluoroalkenes. The method tolerates numerous sensitive functional groups including halogen, protected amine, ester and thiophene substituents. Mechanistic studies (DFT, probe experiments) suggest the catalyst is involved in both the defluorination and fluorination steps, with BF3 acting as a Lewis acid and OEt2 a weak Lewis base that mediates proton transfer. In certain cases, the interconversion of fluoroalkene and difluoroalkane products was found to be reversible. The new catalytic system was applied to demonstrate proof-of-concept recycling of poly(vinylidene difluoride).

5.
Angew Chem Int Ed Engl ; 63(42): e202408257, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39011600

RESUMO

Ligand exchange processes at metal complexes underpin their reactivity and catalytic applications. While mechanisms of ligand exchange at single site complexes are well established, occurring through textbook associative, dissociative and interchange mechanisms, those involving heterometallic complexes are less well developed. Here we report the reactions of a well-defined Fe-Al dihydride complex with exogenous ligands (CO and CNR, R=Me, tBu, Xyl=2,6-Me2C6H3). Based on DFT calculations we suggest that these reactions occur through a dyotropic rearrangement, this involves initial coordination of the exogenous ligand at Al followed by migration to Fe, with simultaneous migration of a hydride ligand from Fe to Al. Such processes are rare for heterometallic complexes. We study the bonding and mechanism of the dyotropic rearrangement through in-depth computational analysis (NBO, IBOs, CLMO analysis, QTAIM, NCIplot, IGMH), shedding new light on how the electronic structure of the heterometallic core responds to the migration of ligands between metal sites. The dyotropic rearrangement fundamentally changes the nature of the hydride ligands, exposing new nucleophilic reactivity as evidenced by insertion reactions with CO2, isocyanates, as well as isocyanides.

6.
Angew Chem Int Ed Engl ; : e202411828, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078719

RESUMO

Reaction of a molecular zinc-hydride [{(ArNCMe)2CH}ZnH] (Ar=2,6-di-isopropylphenyl) with 0.5 equiv. of [Ni(CO)Cp]2 led to the isolation of a nickel-zinc hydride complex containing a bridging 3-centre,2-electron Ni-H-Zn interaction. This species has been characterized in the solid-state by single crystal X-ray diffraction. DFT calculations are consistent with its formulation as a σ-complex derived from coordination of the zinc-hydride to a paramagnetic nickel(I) fragment. Continuous-wave and pulse EPR experiments suggest that this species is labile in solution. Further experiments show that in the presence of catalytic quantities of nickel(I) precursors, zinc-hydride bonds can undergo either H/D-exchange with D2 or dehydrocoupling to form Zn-Zn bonds. In combination, the data support the activation and functionalisation of zinc-hydride bonds at nickel(I) centres.

7.
J Am Chem Soc ; 145(19): 10486-10490, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37154713

RESUMO

Perfluoroalkyl substances (PFAS) are pervasive in the environment. The largest single use material within the PFAS compound class is poly(tetrafluoroethylene) (PTFE), a robust and chemically resistant polymer. Despite their widespread use and serious concerns about their role as pollutants, methods for repurposing PFAS are rare. Here we show that a nucleophilic magnesium reagent reacts with PTFE at room temperature, generating a molecular magnesium fluoride which is easily separated from the surface-modified polymer. The fluoride in turn can be used to transfer the fluorine atoms to a small array of compounds. This proof-of-concept study demonstrates that the atomic fluorine content of PTFE can be harvested and reused in chemical synthesis.

8.
J Am Chem Soc ; 145(13): 7667-7674, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972405

RESUMO

The reversible activation of dihydrogen with a molecular zinc anilide complex is reported. The mechanism of this reaction has been probed through stoichiometric experiments and density functional theory (DFT) calculations. The combined evidence suggests that H2 activation occurs by addition across the Zn-N bond via a four-membered transition state in which the Zn and N atoms play a dual role of Lewis acid and Lewis base. The zinc hydride complex that results from H2 addition has been shown to be remarkably effective for the hydrozincation of C═C bonds at modest temperatures. The scope of hydrozincation includes alkynes, alkenes, and a 1,3-butadiyne. For alkynes, the hydrozincation step is stereospecific leading exclusively to the syn-isomer. Competition experiments show that the hydrozincation of alkynes is faster than the equivalent alkene substrates. These new discoveries have been used to develop a catalytic system for the semi-hydrogenation of alkynes. The catalytic scope includes both aryl- and alkyl-substituted internal alkynes and proceeds with high alkene: alkane, Z:E ratios, and modest functional group tolerance. This work offers a first example of selective hydrogenation catalysis using zinc complexes.

9.
Chem Soc Rev ; 51(12): 4977-4995, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35616085

RESUMO

Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.


Assuntos
Flúor , Gases , Flúor/química , Aquecimento Global
10.
Angew Chem Int Ed Engl ; 62(19): e202219203, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795352

RESUMO

Current examples of carbon chain production from metal formyl intermediates with homogeneous metal complexes are described in this Minireview. Mechanistic aspects of these reactions as well as the challenges and opportunities in using this understanding to develop new reactions of CO and H2 are also discussed.

11.
Angew Chem Int Ed Engl ; 62(16): e202219212, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36799769

RESUMO

Herein we present the first double deprotonation of acetonitrile (CH3 CN) using two equivalents of a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2- dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres occurs through heavily polarised covalent interactions. Mechanistic studies reveal the intermediacy of a monomeric [CH2 CN]- complex, which has been characterised in situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts.[1, 2] The isolation of a [CHCN]2- dianion through simple deprotonation of CH3 CN also offers the possibility of establishing a broader chemistry of this motif.

12.
Angew Chem Int Ed Engl ; 62(2): e202213001, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350647

RESUMO

Reaction of a hexagonal planar palladium complex featuring a [PdMg3 H3 ] core with H2 is reversible and leads to the formation of a new [PdMg2 H4 ] tetrahydride species alongside an equivalent of a magnesium hydride co-product [MgH]. While the reversibility of this process prevented isolation of [PdMg2 H4 ], analogous [PtMg2 H4 ] and [PtZn2 H4 ] complexes could be isolated and characterised through independent syntheses. Computational analysis (DFT, AIM, NCIPlot) of the bonding in a series of heterometallic tetrahydride compounds (Ni-Pt; Mg and Zn) suggests that these complexes are best described as square planar with marginal metal-metal interactions; the strength of which increases slightly as group 10 is descended and increases from Mg to Zn. DFT calculations support a mechanism for H2 activation involving a ligand-assisted oxidative addition to Pd. These findings were exploited to develop a catalytic protocol for H/D exchange into magnesium hydride and zinc hydride bonds.

13.
J Am Chem Soc ; 144(19): 8770-8777, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35512338

RESUMO

The reactions of transition metal complexes underpin numerous synthetic processes and catalytic transformations. Typically, this reactivity involves the participation of empty and filled molecular orbitals centered on the transition metal. Kinetically stabilized species, such as octahedral low-spin d6 transition metal complexes, are not expected to participate directly in these reactions. However, novel approaches that exploit metal-ligand cooperativity offer an opportunity to challenge these preconceptions. Here, we show that inclusion of an aluminum-based ligand into the coordination sphere of neutral low-spin d6 iron complex leads to unexpected reactivity. Complexes featuring an unsupported Fe-Al bond are capable of the intermolecular C-H bond activation of pyridines. Mechanistic analysis suggests that C-H activation proceeds through a reductive deprotonation in which the two metal centers (Fe and Al) act like a frustrated Lewis pair. The key to this behavior is a ground state destabilization of the d6 iron complex, brought about by the inclusion of the electropositive aluminum-based ligand. These findings have immediate implications for the design of reagents and catalysts based on first-row transition metals.

14.
Nature ; 597(7874): 33-34, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471278
15.
Angew Chem Int Ed Engl ; 61(20): e202202241, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225403

RESUMO

Selective reactions that combine H2 , CO and organic electrophiles (aldehyde, ketones, isocyanide) to form hydrogenated C3 and C4 carbon chains are reported. These reactions proceed by CO homologation mediated by [W(CO)6 ] and an aluminum(I) reductant, followed by functionalization and hydrogenation of the chain ends. A combination of kinetics (rates, KIEs) and DFT calculations has been used to gain insight into a key step which involves hydrogenation of a metallocarbene intermediate. These findings expand the extremely small scope of systems that combine H2 and CO to make well-defined products with complete control over chain length and functionality.

16.
Angew Chem Int Ed Engl ; 61(44): e202211948, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36094744

RESUMO

New heterometallic hydride complexes that involve the addition of {Mg-H} and {Zn-H} bonds to group 10 transition metals (Pd, Pt) are reported. The side-on coordination of a single {Mg-H} to Pd forms a well-defined σ-complex. In contrast, addition of three {Mg-H} or {Zn-H} bonds to Pd or Pt results in the formation of planar complexes with subtly different geometries. We compare their structures through experiment (X-ray diffraction, neutron diffraction, multinuclear NMR), computational methods (DFT, QTAIM, NCIPlot), and theoretical analysis (MO diagram, Walsh diagram). These species can be described as snapshots along a continuum of bonding between ideal trigonal planar and hexagonal planar geometries.

17.
Angew Chem Int Ed Engl ; 60(5): 2619-2623, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049105

RESUMO

The chemoselective cleavage of a six-membered aromatic ring in biphenylene is reported using an aluminum(I) complex. This type of selectivity is unprecedented. In every example of transition metal mediated C-C σ-bond activation reported to date, the reaction occurs at the central four-membered ring of biphenylene. Insight into the origin of chemoselectivity was obtained through a detailed mechanistic analysis (isolation of an intermediate, DFT studies, activation strain analysis). In conclusion, the divergent reactivity can be attributed to differences in both the symmetry and radial extension of the frontier molecular orbitals of the aluminum(I) fragment compared to that of common transition metal fragments.

18.
Angew Chem Int Ed Engl ; 60(11): 6145-6153, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33275830

RESUMO

Catalytic methods that transform C-H bonds into C-X bonds are of paramount importance in synthesis. A particular focus has been the generation of organoboranes, organosilanes and organostannanes from simple hydrocarbons (X=B, Si, Sn). Despite the importance of organozinc compounds (X=Zn), their synthesis by the catalytic functionalisation of C-H bonds remains unknown. Herein, we show that a palladium catalyst and zinc hydride reagent can be used to transform C-H bonds into C-Zn bonds. The new catalytic C-H zincation protocol has been applied to a variety of arenes-including fluoroarenes, heteroarenes, and benzene-with high chemo- and regioselectivity. A mechanistic study shows that heterometallic Pd-Zn complexes play a key role in catalysis. The conclusions of this work are twofold; the first is that valuable organozinc compounds are finally accessible by catalytic C-H functionalisation, the second is that heterometallic complexes are intimately involved in bond-making and bond-breaking steps of C-H functionalisation.

19.
Angew Chem Int Ed Engl ; 60(21): 12013-12019, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33605521

RESUMO

A series of linear late transition metal (M=Cu, Ag, Au and Zn) complexes featuring a side-on [B=C]- containing ligand have been isolated and characterised. The [B=C]- moiety is isoelectronic with the C=C system of an alkene. Comparison across the series shows that in the solid-state, deviation between the η2 and η1 coordination mode occurs. A related zinc complex containing two [B=C]- ligands was prepared as a further point of comparison for the η1 coordination mode. The bonding in these new complexes has been interrogated by computational techniques (QTAIM, NBO, ETS-NOCV) and rationalised in terms of the Dewar-Chatt-Duncanson model. The combined structural and computational data provide unique insight into catalytically relevant linear d10 complexes of Cu, Ag and Au. Slippage is proposed to play a key role in catalytic reactions of alkenes through disruption and polarisation of the π-system. Through the preparation and analysis of a consistent series of group 11 complexes, we show that variation of the metal can impact the coordination mode and hence substrate activation.

20.
J Am Chem Soc ; 142(28): 11967-11971, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32589418

RESUMO

Aluminum(I) and magnesium(I) compounds are reported for the C-C σ-bond activation of strained alkylidene cyclopropanes. These reactions result in the formal addition of the C-C σ bond to the main group center either at a single site (Al) or across a metal-metal bond (Mg-Mg). Mechanistic studies suggest that rather than occurring by a concerted oxidative addition, these reactions involve stepwise processes in which substrate binding to the main group metal acts as a precursor to α- or ß-alkyl migration steps that break the C-C σ bond. This mechanistic understanding is used to develop the magnesium-catalyzed hydrosilylation of the C-C σ bonds of alkylidene cyclopropanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA