Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Bioinformatics ; 25(1): 121, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515063

RESUMO

BACKGROUND: With the generation of vast compendia of biological datasets, the challenge is how best to interpret 'omics data alongside biochemical and other small-scale experiments to gain meaningful biological insights. Key to this challenge are computational methods that enable domain-users to generate novel hypotheses that can be used to guide future experiments. Of particular interest are flexible modeling platforms, capable of simulating a diverse range of biological systems with low barriers of adoption to those with limited computational expertise. RESULTS: We introduce Cell4D, a spatial-temporal modeling platform combining a robust simulation engine with integrated graphics visualization, a model design editor, and an underlying XML data model capable of capturing a variety of cellular functions. Cell4D provides an interactive visualization mode, allowing intuitive feedback on model behavior and exploration of novel hypotheses, together with a non-graphics mode, compatible with high performance cloud compute solutions, to facilitate generation of statistical data. To demonstrate the flexibility and effectiveness of Cell4D, we investigate the dynamics of CEACAM1 localization in T-cell activation. We confirm the importance of Ca2+ microdomains in activating calmodulin and highlight a key role of activated calmodulin on the surface expression of CEACAM1. We further show how lymphocyte-specific protein tyrosine kinase can help regulate this cell surface expression and exploit spatial modeling features of Cell4D to test the hypothesis that lipid rafts regulate clustering of CEACAM1 to promote trans-binding to neighbouring cells. CONCLUSIONS: Through demonstrating its ability to test and generate hypotheses, Cell4D represents an effective tool to help integrate knowledge across diverse, large and small-scale datasets.


Assuntos
Calmodulina , Fenômenos Fisiológicos Celulares , Simulação por Computador , Membrana Celular
2.
Nature ; 525(7569): 339-44, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26344197

RESUMO

Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems.


Assuntos
Evolução Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Animais , Conjuntos de Dados como Assunto , Humanos , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes , Biologia de Sistemas , Espectrometria de Massas em Tandem
3.
Bioinformatics ; 31(20): 3390-1, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26108529

RESUMO

MOTIVATION: Network biology has emerged as a powerful tool to uncover the organizational properties of living systems through the application of graph theoretic approaches. However, due to limitations in underlying data models and visualization software, knowledge relating to large molecular assemblies and biologically active fragments is poorly represented. RESULTS: Here, we demonstrate a novel hypergraph implementation that better captures hierarchical structures, using components of elastic fibers and chromatin modification as models. These reveal unprecedented views of the biology of these systems, demonstrating the unique capacity of hypergraphs to resolve overlaps and uncover new insights into the subfunctionalization of variant complexes. AVAILABILITY AND IMPLEMENTATION: Hyperscape is available as a web application at http://www.compsysbio.org/hyperscape. Source code, examples and a tutorial are freely available under a GNU license. CONTACTS: john.parkinson@utoronto.ca or graham.cromar@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biologia de Sistemas , Cromatina/metabolismo , Gráficos por Computador , Tecido Elástico/metabolismo
4.
Proteins ; 80(6): 1522-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22275077

RESUMO

Advances in high throughput 'omic technologies are starting to provide unprecedented insights into how components of biological systems are organized and interact. Key to exploiting these datasets is the definition of the components that comprise the system of interest. Although a variety of knowledge bases exist that capture such information, a major challenge is determining how these resources may be best utilized. Here we present a systematic curation strategy to define a systems-level view of the human extracellular matrix (ECM)--a three-dimensional meshwork of proteins and polysaccharides that impart structure and mechanical stability to tissues. Employing our curation strategy we define a set of 357 proteins that represent core components of the ECM, together with an additional 524 genes that mediate related functional roles, and construct a map of their physical interactions. Topological properties help identify modules of functionally related proteins, including those involved in cell adhesion, bone formation and blood clotting. Because of its major role in cell adhesion, proliferation and morphogenesis, defects in the ECM have been implicated in cancer, atherosclerosis, asthma, fibrosis, and arthritis. We use MeSH annotations to identify modules enriched for specific disease terms that aid to strengthen existing as well as predict novel gene-disease associations. Mapping expression and conservation data onto the network reveal modules evolved in parallel to convey tissue-specific functionality on otherwise broadly expressed units. In addition to demonstrating an effective workflow for defining biological systems, this study crystallizes our current knowledge surrounding the organization of the ECM.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Biologia de Sistemas/métodos , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos
5.
PLoS Negl Trop Dis ; 16(7): e0010600, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857765

RESUMO

During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions. To identify molecular pathways in the brain affected by chronic T. gondii infection, we investigated patterns of gene expression. As expected, infection was associated with an enrichment of genes associated with general immune response pathways, that otherwise limits statistical power to identify more informative pathways. To overcome this limitation and focus on pathways of neurological relevance, we developed a novel context enrichment approach that relies on a customized ontology. Applying this approach, we identified genes that exhibited unexpected patterns of expression arising from the combination of cocaine exposure and infection. These include sets of genes which exhibited dampened response to cocaine in infected mice, suggesting a possible mechanism for some observed behaviors and a neuroprotective effect that may be advantageous to parasite persistence. This model offers a powerful new approach to dissect the molecular pathways by which T. gondii infection contributes to neurocognitive disorders.


Assuntos
Cocaína , Toxoplasma , Animais , Encéfalo/parasitologia , Cocaína/metabolismo , Dopamina , Expressão Gênica , Masculino , Camundongos
6.
Cell Syst ; 10(4): 333-350.e14, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32325033

RESUMO

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Conectoma/métodos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Aprendizado de Máquina , Mamíferos/fisiologia , Espectrometria de Massas/métodos , Camundongos , Mutação/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-26980519

RESUMO

PhyloPro is a database and accompanying web-based application for the construction and exploration of phylogenetic profiles across the Eukarya. In this update article, we present six major new developments in PhyloPro: (i) integration of Pfam-A domain predictions for all proteins; (ii) new summary heatmaps and detailed level views of domain conservation; (iii) an interactive, network-based visualization tool for exploration of domain architectures and their conservation; (iv) ability to browse based on protein functional categories (GOSlim); (v) improvements to the web interface to enhance drill down capability from the heatmap view; and (vi) improved coverage including 164 eukaryotes and 12 reference species. In addition, we provide improved support for downloading data and images in a variety of formats. Among the existing tools available for phylogenetic profiles, PhyloPro provides several innovative domain-based features including a novel domain adjacency visualization tool. These are designed to allow the user to identify and compare proteins with similar domain architectures across species and thus develop hypotheses about the evolution of lineage-specific trajectories. Database URL: http://www.compsysbio.org/phylopro/.


Assuntos
Sequência Conservada , Bases de Dados de Proteínas , Eucariotos/metabolismo , Filogenia , Estrutura Terciária de Proteína , Ferramenta de Busca , Especificidade da Espécie
8.
Data Brief ; 6: 715-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26870755

RESUMO

Our analysis examines the conservation of multiprotein complexes among metazoa through use of high resolution biochemical fractionation and precision mass spectrometry applied to soluble cell extracts from 5 representative model organisms Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Strongylocentrotus purpuratus, and Homo sapiens. The interaction network obtained from the data was validated globally in 4 distant species (Xenopus laevis, Nematostella vectensis, Dictyostelium discoideum, Saccharomyces cerevisiae) and locally by targeted affinity-purification experiments. Here we provide details of our massive set of supporting biochemical fractionation data available via ProteomeXchange (PXD002319-PXD002328), PPIs via BioGRID (185267); and interaction network projections via (http://metazoa.med.utoronto.ca) made fully accessible to allow further exploration. The datasets here are related to the research article on metazoan macromolecular complexes in Nature [1].

10.
Genome Biol Evol ; 6(10): 2897-917, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25323955

RESUMO

The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.


Assuntos
Evolução Molecular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Animais , Humanos , Sequências de Repetição em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA