Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Immunol ; 54(4): e2350675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396108

RESUMO

Human CD4+EOMES+ T cells are heterogeneous and contain Th1-cells, Tr1-cells, and CD4+CTL. Tr1- cells and non-classical EOMES+ Th1-cells displayed, respectively, anti- and pro-inflammatory cytokine profiles, but both expressed granzyme-K, produced IFN-γ, and suppressed T-cell proliferation. Diffusion map suggested a progressive CD4+T-cell differentiation from naïve to cytotoxic cells and identified EOMES+Th1-cells as putative Tr1-cell precursors (pre-Tr1).


Assuntos
Interleucina-10 , Subpopulações de Linfócitos T , Humanos , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Células Th1 , Diferenciação Celular , Proteínas com Domínio T/genética
2.
Eur J Immunol ; 51(12): 3243-3246, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528258

RESUMO

Ex vivo gene expression and miRNA profiling of Eomes+ Tr1-like cells suggested that they represent a differentiation stage that is intermediate between Th1-cells and cytotoxic CD4+ T-cells. Several microRNAs were downregulated in Eomes+ Tr1-like cells that might inhibit Tr1-cell differentiation. In particular, miR-92a targeted Eomes, while miR-125a inhibited IFN-g and IL-10R expression.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/imunologia , Receptores de Interleucina-10/imunologia , Proteínas com Domínio T/imunologia , Células Th1/imunologia , Humanos
3.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29369775

RESUMO

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Assuntos
Citocinas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores CCR5/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Animais , Células Cultivadas , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto Jovem
4.
J Biol Chem ; 292(7): 2903-2915, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28077577

RESUMO

Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.


Assuntos
Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/citologia , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Subpopulações de Linfócitos T , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Etanercepte/uso terapêutico , Humanos , MicroRNAs/sangue , Psoríase/sangue , Psoríase/tratamento farmacológico , Psoríase/genética
5.
Eur J Immunol ; 46(7): 1622-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129615

RESUMO

IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.


Assuntos
Antígenos CD1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Apresentação Cruzada/imunologia , Citocinas/metabolismo , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
6.
J Immunol ; 193(7): 3322-31, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172491

RESUMO

IL-21 promotes Th17 differentiation, and Th17 cells that upregulate T-bet, IFN-γ, and GM-CSF drive experimental autoimmune diseases in mice. Anti-IL-21 treatment of autoimmune patients is therefore a therapeutic option, but the role of IL-21 in human T cell differentiation is incompletely understood. IL-21 was produced at high levels by human CD4(+) central memory T cells, suggesting that it is associated with early T cell differentiation. Consistently, it was inhibited by forced expression of T-bet or RORC2, the lineage-defining transcription factors of Th1 and Th17 effector cells, respectively. Although IL-21 was efficiently induced by IL-12 in naive CD4(+) T cells, it inhibited the generation of Th1 effector cells in a negative feedback loop. IL-21 was also induced by IL-6 and promoted Th17 differentiation, but it was not absolutely required. Importantly, however, IL-21 promoted IL-10 secretion but inhibited IFN-γ and GM-CSF production in developing Th17 cells, and consequently prevented the generation of polyfunctional Th1/17 effector cells. Moreover, in Th17 memory cells, IL-21 selectively inhibited T-bet upregulation and GM-CSF production. In summary, IL-21 is a central memory T cell-associated cytokine that promotes Th17 differentiation and IL-10 production, but inhibits the generation of potentially pathogenic Th1/17 effector cells. These findings shed new light on the role of IL-21 in T cell differentiation, and have relevant implications for anti-IL-21 therapy of autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Interleucinas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Células Th1/patologia , Células Th17/patologia , Regulação para Cima/imunologia
7.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37462681

RESUMO

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/patologia , Escherichia coli , Células Th17/patologia , Inibidores do Fator de Necrose Tumoral , Intestinos/patologia , Inflamação/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Interleucina-23 , Mucosa Intestinal/patologia , Aderência Bacteriana
9.
Cell Metab ; 28(6): 895-906.e5, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30197303

RESUMO

Naive T cells respond to T cell receptor (TCR) activation by leaving quiescence, remodeling metabolism, initiating expansion, and differentiating toward effector T cells. The molecular mechanisms coordinating the naive to effector transition are central to the functioning of the immune system, but remain elusive. Here, we discover that T cells fulfill this transitional process through translational control. Naive cells accumulate untranslated mRNAs encoding for glycolysis and fatty acid synthesis factors and possess a translational machinery poised for immediate protein synthesis. Upon TCR engagement, activation of the translational machinery leads to synthesis of GLUT1 protein to drive glucose entry. Subsequently, translation of ACC1 mRNA completes metabolic reprogramming toward an effector phenotype. Notably, inhibition of the eIF4F complex abrogates lymphocyte metabolic activation and differentiation, suggesting ACC1 to be a key regulatory node. Thus, our results demonstrate that translation is a direct mediator of T cell metabolism and indicate translation factors as targets for novel immunotherapeutic approaches.


Assuntos
Acetil-CoA Carboxilase/biossíntese , Linfócitos T CD4-Positivos/metabolismo , Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 1/biossíntese , Glicólise , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Proliferação de Células , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Humanos , Ativação Linfocitária , Biossíntese de Proteínas , Subpopulações de Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA