Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 66(1): 154-162.e10, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344083

RESUMO

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Células CHO , Cílios/metabolismo , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Receptor Smoothened/genética , Transfecção
2.
Nat Commun ; 9(1): 5138, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510211

RESUMO

Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.


Assuntos
Colesterol/biossíntese , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Esteróis/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Estrutura Molecular , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevenção & controle , Proteólise/efeitos dos fármacos , Esteróis/química , Ubiquitinação/efeitos dos fármacos
3.
Eur J Med Chem ; 111: 126-37, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26866967

RESUMO

A series of D-ring fused 1,2,3-thiadiazole DHEA derivatives were synthesized and investigated for their activity against the growth of various tumor cell lines using the sulforhodamine B (SRB) assay. It is amazing that for these compounds, T47D cell line was much more sensitive than other tumor cell lines. The most potent saturated N-heterocyclic derivatives showed similar antitumor effect with the positive control compound ADM (adriamycin) on T47D cells, that was 44-60 folds more potent than the lead compound DHEA. Most compounds with potent antitumor activity displayed low toxicity on normal human fibroblasts (HAF). Especially compound 25 (CH33) showed an IC50 of 0.058 µM on T47D cells and its selectivity index (SI) between HAF and T47D was 364, which was 214 folds better than ADM (SI = 1.7). The apoptosis, colony formation and transwell migration assays of 25 were performed on T47D cell line. The primary mechanism study showed that 25 caused a dose-dependent induction of apoptosis, and induced phosphorylation of EphA2 and EphB3 in T47D cells. The in vivo antitumor effect of 25 was also observed in T47D tumor-bearing mice without obvious toxicity.


Assuntos
Androstenos/síntese química , Androstenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Prolina/análogos & derivados , Androstenos/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Prolina/síntese química , Prolina/química , Prolina/farmacologia , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 90: 10-20, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25461307

RESUMO

The diterpenoid compound 5 was identified as an antibacterial lead in our screening of small synthetic natural product-like (NPL) library. A series of novel diterpene derivatives were synthesized and investigated for their activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Among the compounds tested, 42 and 43 showed highest activity with a MIC of 1 µg/mL against strain Newman, 45 and 52 showed the most potent activity with MIC values of 0.71-3.12 µg/mL against five multidrug-resistant S. aureus. All high-antimicrobial active compounds showed no obvious toxicity to human fibroblast (HAF) cells at the MIC concentration.


Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pirazóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Relação Estrutura-Atividade
5.
Eur J Med Chem ; 95: 240-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25817774

RESUMO

A series of novel heterocycle-modified betulinic acid (BA) derivatives were synthesized and investigated for their activity against the growth of eight non-drug resistant and one multidrug-resistant tumor cell line using a sulforhodamine B (SRB) assay. The most active compound 17 showed an average IC50 1.19 µM, which was about 20 times more potent than the lead compound BA. It is amazing that for most synthetic saturated N-heterocycle derivatives, MCF-7/ADR was the most sensitive tumor cells, especially 17 showed the most potent antitumor activity (IC50 = 0.33 µM) on this multidrug-resistant tumor cell line, that was 117 times more potent than BA. Most of the tested compounds displayed less toxic on human fibroblasts (HAF) in comparison with the tumor cell lines. The cytometry and transwell migration assays were used to test the ability of 17 to induce apoptosis and inhibit metastasis on tumor cell lines respectively.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Triterpenos/síntese química , Triterpenos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Triterpenos Pentacíclicos , Triterpenos/química , Ácido Betulínico
6.
Chem Biol Drug Des ; 84(2): 223-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24612785

RESUMO

Glycyrrhetinic acid (GA) is one of the most important triterpenoic acids shows many pharmacological effects, especially antitumor activity. GA triggers apoptosis in various tumor cell lines. However, the antitumor activity of GA is weak, thus the synthesis of new synthetic analogs with enhanced potency is needed. By introducing various five-member fused heterocyclic rings at C-2 and C-3 positions, 18 novel GA derivatives were obtained. These compounds were evaluated for their inhibitory activity against the growth of eight different tumor cell lines using a SRB assay. The most active compound 37 showed IC50 between 5.19 and 11.72 µm, which was about 11-fold more potent than the lead compound GA. An apoptotic effect of GA and 37 was determined using flow cytometry and trypan blue exclusion assays. We also demonstrated here for the first time that GA and the synthetic derivatives exhibited inhibitory effect on migration of the tested tumor cells, especially 37 which was about 20-fold more potent than GA on antimetastatic activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Glicirretínico/análogos & derivados , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Glicirretínico/síntese química , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Humanos , Metástase Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA