Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Otolaryngol ; 45(2): 104177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38113772

RESUMO

INTRODUCTION: Increasing evidence suggests that autoimmune disorders and their immunomodulating medications may increase the risk of rhinosinusitis compared to rhinitis. GOAL: To investigate the association between autoimmune disorders and rhinosinusitis. METHODS: We performed a case-control study of patients referred to West Virginia University from August 2020 to October 2022 for rhinologic complaints. Rhinosinusitis patients were diagnosed with either chronic rhinosinusitis (CRS) or recurrent acute rhinosinusitis (RARS). These patients were compared to non-rhinosinusitis patients. Patients' characteristics, comorbidities, and type of treatment of autoimmune disorders were reviewed. RESULTS: The sample consisted of 527 rhinosinusitis [184 CRS without nasal polyps (CRSsNP), 263 CRS with nasal polyps (CRSwNP) and 80 RARS patients] patients and 564 non-rhinosinusitis patients. Patients with rhinosinusitis were more likely to be older, males, have asthma, and have current and past smoking history (all with p-value < 0.05). Autoimmune disorders, primary antibody deficiency, and immunomodulator agents were more common in rhinosinusitis patients (16.5 % vs 9.4 %, OR = 1.9, p < 0.001; 5.1 % vs 0.5 %, OR = 10.1, p < 0.001; and 3.8 % vs 1.1 %, OR = 3.7, p = 0.003 respectively). Multivariate logistic regression adjusting for confounders showed that autoimmune disorders were strongly associated with rhinosinusitis [OR = 1.6, 95 % CI = 1.10-2.48], whereas the immunomodulators did not reach statistical significance [OR = 2.4, 95 % CI = 0.87-6.47]. Subgroup analysis showed the autoimmune disorders did not significantly differ between CRS and RARS groups [OR = 1.0, 95 % CI = 0.5-2.1], or between the CRSsNP and CRSwNP groups [OR = 0.9, 95 % CI = 0.5-1.7]. CONCLUSION: Autoimmune disorders are associated with rhinosinusitis, both CRS and RARS, independently of other risk factors.


Assuntos
Doenças Autoimunes , Pólipos Nasais , Rinossinusite , Sinusite , Adulto , Masculino , Humanos , Estudos de Casos e Controles , Pólipos Nasais/complicações , Pólipos Nasais/epidemiologia , Sinusite/complicações , Sinusite/epidemiologia , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Adjuvantes Imunológicos , Doença Crônica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38776147

RESUMO

PURPOSE: To determine the effect of aromatherapy on postoperative anxiety and pain in patients undergoing oculoplastic surgery. METHODS: A randomized controlled study of 60 patients who underwent monitored anesthesia care sedation for oculoplastic procedures from August 2018 to November 2020. Patients were randomized to an aromatherapy (n = 32) or placebo (n = 28) condition. Anxiety was measured with State-Trait Anxiety Inventory and visual analog scale for anxiety. Pain was measured with a visual analog scale for pain. RESULTS: Compared with control patients, aromatherapy patients had significantly lower postoperative State-Trait Anxiety Inventory state anxiety (24.1 vs. 29.1; p = 0.05) and visual analog scale pain scores (1.9 vs. 3.2; p = 0.05). Aromatherapy patients also had shorter stays in the postanesthesia care unit than control patients (57.7 vs. 79.4 minutes; p = 0.03). CONCLUSIONS: Patients who received aromatherapy reported lower postoperative anxiety and pain. Aromatherapy may be a useful adjuvant analgesic and/or anxiolytic for patients undergoing oculoplastic procedures with monitored anesthesia care sedation.

3.
BMC Plant Biol ; 23(1): 330, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344795

RESUMO

BACKGROUND: Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS: The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS: Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Metabolismo dos Carboidratos/genética , Estresse Fisiológico/genética , Etilenos , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 23(1): 447, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736713

RESUMO

BACKGROUND: Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS: In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS: This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.


Assuntos
Antioxidantes , Ácido Ascórbico , Gossypium/genética , Ácido Abscísico , Filogenia , Inositol
5.
BMC Plant Biol ; 23(1): 245, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161359

RESUMO

BACKGROUND: Cotton is an important industrial crop and a pioneer crop for saline-alkali land restoration. However, the molecular mechanism underlying the cotton response to salt is not completely understood. METHODS: Here, we used metabolome data and transcriptome data to analyze the salt tolerance regulatory network of cotton and metabolic biomarkers. RESULTS: In this study, cotton was stressed at 400 m M NaCl for 0 h, 3 h, 24 h and 48 h. NaCl interfered with cotton gene expression, altered metabolite contents and affected plant growth. Metabolome analysis showed that NaCl stress increased the contents of amino acids, sugars and ABA, decreased the amount of vitamin and terpenoids. K-means cluster analysis of differentially expressed genes showed that the continuously up-regulated genes were mainly enriched in metabolic pathways such as flavonoid biosynthesis and amino acid biosynthesis. CONCLUSION: The four metabolites of cysteine (Cys), ABA(Abscisic acid), turanose, and isopentenyladenine-7-N-glucoside (IP7G) were consistently up-regulated under salt stress, which may indicate that they are potential candidates for cotton under salt stress biomarkers. Combined transcriptome and metabolome analysis revealed accumulation of cysteine, ABA, isopentenyladenine-7-N-glucoside and turanose were important for salt tolerance in cotton mechanism. These results will provide some metabolic insights and key metabolite biomarkers for salt stress tolerance, which may help to understanding of the metabolite response to salt stress in cotton and develop a foundation for cotton to grow better in saline soil.


Assuntos
Tolerância ao Sal , Transcriptoma , Tolerância ao Sal/genética , Cisteína , Cloreto de Sódio/farmacologia , Gossypium/genética , Biomarcadores
6.
BMC Plant Biol ; 23(1): 124, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869319

RESUMO

BACKGROUND: 2-oxoglutarate-dependent dioxygenase (2ODD) is the second largest family of oxidases involved in various oxygenation/hydroxylation reactions in plants. Many members in the family regulate gene transcription, nucleic acid modification/repair and secondary metabolic synthesis. The 2ODD family genes also function in the formation of abundant flavonoids during anthocyanin synthesis, thereby modulating plant development and response to diverse stresses. RESULTS: Totally, 379, 336, 205, and 204 2ODD genes were identified in G. barbadense (Gb), G. hirsutum (Gh), G. arboreum (Ga), and G. raimondii (Gb), respectively. The 336 2ODDs in G. hirsutum were divided into 15 subfamilies according to their putative functions. The structural features and functions of the 2ODD members in the same subfamily were similar and evolutionarily conserved. Tandem duplications and segmental duplications served essential roles in the large-scale expansion of the cotton 2ODD family. Ka/Ks values for most of the gene pairs were less than 1, indicating that 2ODD genes undergo strong purifying selection during evolution. Gh2ODDs might act in cotton responses to different abiotic stresses. GhLDOX3 and GhLDOX7, two members of the GhLDOX subfamily from Gh2ODDs, were significantly down-regulated in transcription under alkaline stress. Moreover, the expression of GhLDOX3 in leaves was significantly higher than that in other tissues. These results will provide valuable information for further understanding the evolution mechanisms and functions of the cotton 2ODD genes in the future. CONCLUSIONS: Genome-wide identification, structure, and evolution and expression analysis of 2ODD genes in Gossypium were carried out. The 2ODDs were highly conserved during evolutionary. Most Gh2ODDs were involved in the regulation of cotton responses to multiple abiotic stresses including salt, drought, hot, cold and alkali.


Assuntos
Álcalis , Gossypium , Secas , Flavonoides , Hidroxilação
7.
Psychol Med ; 53(8): 3591-3600, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35144713

RESUMO

BACKGROUND: Fewer than half of patients with major depressive disorder (MDD) respond to psychotherapy. Pre-emptively informing patients of their likelihood of responding could be useful as part of a patient-centered treatment decision-support plan. METHODS: This prospective observational study examined a national sample of 807 patients beginning psychotherapy for MDD at the Veterans Health Administration. Patients completed a self-report survey at baseline and 3-months follow-up (data collected 2018-2020). We developed a machine learning (ML) model to predict psychotherapy response at 3 months using baseline survey, administrative, and geospatial variables in a 70% training sample. Model performance was then evaluated in the 30% test sample. RESULTS: 32.0% of patients responded to treatment after 3 months. The best ML model had an AUC (SE) of 0.652 (0.038) in the test sample. Among the one-third of patients ranked by the model as most likely to respond, 50.0% in the test sample responded to psychotherapy. In comparison, among the remaining two-thirds of patients, <25% responded to psychotherapy. The model selected 43 predictors, of which nearly all were self-report variables. CONCLUSIONS: Patients with MDD could pre-emptively be informed of their likelihood of responding to psychotherapy using a prediction tool based on self-report data. This tool could meaningfully help patients and providers in shared decision-making, although parallel information about the likelihood of responding to alternative treatments would be needed to inform decision-making across multiple treatments.


Assuntos
Transtorno Depressivo Maior , Veteranos , Humanos , Transtorno Depressivo Maior/terapia , Depressão/terapia , Resultado do Tratamento , Psicoterapia
8.
Psychol Med ; 53(11): 5001-5011, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37650342

RESUMO

BACKGROUND: Only a limited number of patients with major depressive disorder (MDD) respond to a first course of antidepressant medication (ADM). We investigated the feasibility of creating a baseline model to determine which of these would be among patients beginning ADM treatment in the US Veterans Health Administration (VHA). METHODS: A 2018-2020 national sample of n = 660 VHA patients receiving ADM treatment for MDD completed an extensive baseline self-report assessment near the beginning of treatment and a 3-month self-report follow-up assessment. Using baseline self-report data along with administrative and geospatial data, an ensemble machine learning method was used to develop a model for 3-month treatment response defined by the Quick Inventory of Depression Symptomatology Self-Report and a modified Sheehan Disability Scale. The model was developed in a 70% training sample and tested in the remaining 30% test sample. RESULTS: In total, 35.7% of patients responded to treatment. The prediction model had an area under the ROC curve (s.e.) of 0.66 (0.04) in the test sample. A strong gradient in probability (s.e.) of treatment response was found across three subsamples of the test sample using training sample thresholds for high [45.6% (5.5)], intermediate [34.5% (7.6)], and low [11.1% (4.9)] probabilities of response. Baseline symptom severity, comorbidity, treatment characteristics (expectations, history, and aspects of current treatment), and protective/resilience factors were the most important predictors. CONCLUSIONS: Although these results are promising, parallel models to predict response to alternative treatments based on data collected before initiating treatment would be needed for such models to help guide treatment selection.


Assuntos
Transtorno Depressivo Maior , Veteranos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Depressão , Antidepressivos/uso terapêutico , Aprendizado de Máquina
9.
Physiol Plant ; 175(5): e14022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882310

RESUMO

As an important member of the two-component system (TCS), histidine kinases (HKs) play important roles in various plant developmental processes and signal transduction in response to a wide range of biotic and abiotic stresses. So far, the HK gene family has not been investigated in Gossypium. In this study, a total of 177 HK gene family members were identified in cotton. They were further divided into seven groups, and the protein characteristics, genetic relationship, gene structure, chromosome location, collinearity, and cis-elements identification were comprehensively analyzed. Whole genome duplication (WGD) / segmental duplication may be the reason why the number of HK genes doubled in tetraploid Gossypium species. Expression analysis revealed that most cotton HK genes were mainly expressed in the reproductive organs and the fiber at initial stage. Gene expression analysis revealed that HK family genes are involved in cotton abiotic stress, especially drought stress and salt stress. In addition, gene interaction networks showed that HKs were involved in the regulation of cotton abiotic stress, especially drought stress. VIGS experiments have shown that GhHK8 is a negative regulatory factor in response to drought stress. Our systematic analysis provided insights into the characteristics of the HK genes in cotton and laid a foundation for further exploring their potential in drought stress resistance in cotton.


Assuntos
Gossypium , Família Multigênica , Gossypium/fisiologia , Histidina Quinase/genética , Histidina Quinase/metabolismo , Resistência à Seca , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/metabolismo
10.
Ecotoxicol Environ Saf ; 263: 115386, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598545

RESUMO

Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.


Assuntos
Cádmio , Gossypium , Gossypium/genética , Cádmio/toxicidade , Sobrevivência Celular , Cisteína , Fotossíntese/genética , Compostos de Enxofre , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA