Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172566

RESUMO

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Complexos Multiproteicos , Humanos , Endossomos/metabolismo , Transporte Proteico , Proteínas/metabolismo , Complexos Multiproteicos/metabolismo
2.
Nat Rev Mol Cell Biol ; 19(11): 679-696, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194414

RESUMO

Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.


Assuntos
Endocitose/fisiologia , Transporte Proteico/fisiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Humanos , Proteínas de Membrana/metabolismo
3.
Nature ; 589(7842): 456-461, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328639

RESUMO

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Assuntos
Autofagia/imunologia , Nexinas de Classificação/metabolismo , Vírus/imunologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Traffic ; 24(6): 234-250, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37089068

RESUMO

Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.


Assuntos
Endossomos , Interações Hospedeiro-Patógeno , Complexos Multiproteicos , Receptores de Superfície Celular , Nexinas de Classificação , Humanos , Nexinas de Classificação/metabolismo , Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Rede trans-Golgi/metabolismo , Salmonella typhimurium/metabolismo , Chlamydia trachomatis/metabolismo , Vírus/metabolismo , Receptores de Superfície Celular/metabolismo , Transporte Proteico
5.
PLoS Biol ; 20(4): e3001601, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417450

RESUMO

Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.


Assuntos
Endossomos , Nexinas de Classificação , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Transporte Proteico , Nexinas de Classificação/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696571

RESUMO

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Assuntos
COVID-19 , Endossomos , Interações Hospedeiro-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Endossomos/virologia , Deleção de Genes , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , SARS-CoV-2/metabolismo , Nexinas de Classificação/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
J Med Genet ; 60(4): 359-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36113987

RESUMO

PURPOSE: The Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS. METHODS: We report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology. RESULTS: In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake. CONCLUSION: VPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.


Assuntos
Anormalidades Múltiplas , Síndrome de Dandy-Walker , Comunicação Interatrial , Hipercolesterolemia , Humanos , Anormalidades Múltiplas/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial/genética
8.
J Cell Sci ; 133(16)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843536

RESUMO

The concentration of essential micronutrients, such as copper (used here to describe both Cu+ and Cu2+), within the cell is tightly regulated to avoid their adverse deficiency and toxicity effects. Retromer-mediated sorting and recycling of nutrient transporters within the endo-lysosomal network is an essential process in regulating nutrient balance. Cellular copper homeostasis is regulated primarily by two transporters: the copper influx transporter copper transporter 1 (CTR1; also known as SLC31A1), which controls the uptake of copper, and the copper-extruding ATPase ATP7A, a recognised retromer cargo. Here, we show that in response to fluctuating extracellular copper, retromer controls the delivery of CTR1 to the cell surface. Following copper exposure, CTR1 is endocytosed to prevent excessive copper uptake. We reveal that internalised CTR1 localises on retromer-positive endosomes and, in response to decreased extracellular copper, retromer controls the recycling of CTR1 back to the cell surface to maintain copper homeostasis. In addition to copper, CTR1 plays a central role in the trafficking of platinum. The efficacy of platinum-based cancer drugs has been correlated with CTR1 expression. Consistent with this, we demonstrate that retromer-deficient cells show reduced sensitivity to the platinum-based drug cisplatin.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Animais , Proteínas de Transporte de Cátions/genética , Cisplatino , Cobre/metabolismo , Transportador de Cobre 1 , Homeostase
9.
J Cell Sci ; 133(15)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747499

RESUMO

Human retromer, a heterotrimer of VPS26 (VPS26A or VPS26B), VPS35 and VPS29, orchestrates the endosomal retrieval of internalised cargo and promotes their cell surface recycling, a prototypical cargo being the glucose transporter GLUT1 (also known as SLC2A1). The role of retromer in the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR, also known as IGF2R) from endosomes back to the trans-Golgi network remains controversial. Here, by applying knocksideways technology, we develop a method for acute retromer inactivation. While retromer knocksideways in HeLa and H4 human neuroglioma cells resulted in time-resolved defects in cell surface sorting of GLUT1, we failed to observe a quantifiable defect in CI-MPR sorting. In contrast, knocksideways of the ESCPE-1 complex - a key regulator of retrograde CI-MPR sorting - revealed time-resolved defects in CI-MPR sorting. Together, these data are consistent with a comparatively limited role for retromer in ESCPE-1-mediated CI-MPR retrograde sorting, and establish a methodology for acute retromer and ESCPE-1 inactivation that will aid the time-resolved dissection of their functional roles in endosomal cargo sorting.


Assuntos
Nexinas de Classificação , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Células HeLa , Humanos , Transporte Proteico , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
10.
J Cell Sci ; 133(14)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513819

RESUMO

The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.


Assuntos
Autofagossomos , Endossomos , Nexinas de Classificação , Animais , Autofagossomos/metabolismo , Autofagia , Endossomos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
11.
J Cell Sci ; 131(17)2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072438

RESUMO

The endo-lysosomal network serves an essential role in determining the fate of endocytosed transmembrane proteins and their associated proteins and lipids. Sorting nexins (SNXs) play a central role in the functional organisation of this network. Comprising over 30 proteins in humans, SNXs are classified into sub-groups based on the presence of additional functional domains. Sorting nexin-20 (SNX20) and sorting nexin-21 (SNX21) comprise the SNX-PXB proteins. The presence of a predicted protein-protein interaction domain, termed the PX-associated B (PXB) domain, has led to the proposal that they function as endosome-associated scaffolds. Here, we used unbiased quantitative proteomics to define the SNX21 interactome. We reveal that the N-terminal extension of SNX21 interacts with huntingtin (Htt) whereas the PXB domain appears to associate with septins, a family of cytoskeletal- and membrane-associated proteins. In establishing that these interactions are sufficient for SNX21 to recruit Htt and septins on to an endosomal population, we reveal a scaffolding function for this sorting nexin. Our work paves the way for a more-detailed mechanistic analysis of the role(s) of the SNX-PXB proteins in endosomal biology.


Assuntos
Endossomos/metabolismo , Proteína Huntingtina/metabolismo , Nexinas de Classificação/metabolismo , Linhagem Celular , Endossomos/genética , Humanos , Proteína Huntingtina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Septinas/genética , Septinas/metabolismo , Nexinas de Classificação/química , Nexinas de Classificação/genética
12.
J Cell Sci ; 131(11)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724910

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic human disease, with around 12.5 million people affected worldwide. ADPKD results from mutations in either PKD1 or PKD2, which encode the atypical G-protein coupled receptor polycystin-1 (PC1) and the transient receptor potential channel polycystin-2 (PC2), respectively. Although altered intracellular trafficking of PC1 and PC2 is an underlying feature of ADPKD, the mechanisms which govern vesicular transport of the polycystins through the biosynthetic and endosomal membrane networks remain to be fully elucidated. Here, we describe an interaction between PC2 and retromer, a master controller for the sorting of integral membrane proteins through the endo-lysosomal network. We show that association of PC2 with retromer occurs via a region in the PC2 cytoplasmic amino-terminal domain, independently of the retromer-binding Wiskott-Aldrich syndrome and scar homologue (WASH) complex. Based on observations that retromer preferentially interacts with a trafficking population of PC2, and that ciliary levels of PC1 are reduced upon mutation of key residues required for retromer association in PC2, our data are consistent with the identification of PC2 as a retromer cargo protein.This article has an associated First Person interview with the first author of the paper.


Assuntos
Complexos Multiproteicos/metabolismo , Canais de Cátion TRPP/metabolismo , Motivos de Aminoácidos , Animais , Endossomos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , Complexos Multiproteicos/genética , Rim Policístico Autossômico Dominante/metabolismo , Domínios e Motivos de Interação entre Proteínas , Canais de Cátion TRPP/genética
13.
Nat Rev Mol Cell Biol ; 9(7): 574-82, 2008 07.
Artigo em Inglês | MEDLINE | ID: mdl-18523436

RESUMO

The endocytic network comprises a series of interconnected tubulo-vesicular membranous compartments that together regulate various sorting and signalling events. Although it is clear that defects in endocytic function underlie a variety of human diseases, our understanding of the molecular entities that regulate these sorting and signalling events remains limited. Here we discuss the sorting nexins family of proteins and propose that they have a fundamental role in orchestrating the formation of protein complexes that are involved in endosomal sorting and signalling.


Assuntos
Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Retículo Endoplasmático/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Filogenia , Sinais Direcionadores de Proteínas , Transporte Proteico/fisiologia , Nexinas de Classificação , Proteínas de Transporte Vesicular/classificação , Proteínas de Transporte Vesicular/genética
14.
J Cell Sci ; 130(2): 382-395, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909246

RESUMO

Retromer and the associated actin-polymerizing WASH complex are essential for the endocytic recycling of a wide range of integral membrane proteins. A hereditary Parkinson's-disease-causing point mutation (D620N) in the retromer subunit VPS35 perturbs retromer's association with the WASH complex and also with the uncharacterized protein ankyrin-repeat-domain-containing protein 50 (ANKRD50). Here, we firmly establish ANKRD50 as a new and essential component of the SNX27-retromer-WASH super complex. Depletion of ANKRD50 in HeLa or U2OS cells phenocopied the loss of endosome-to-cell-surface recycling of multiple transmembrane proteins seen upon suppression of SNX27, retromer or WASH-complex components. Mass-spectrometry-based quantification of the cell surface proteome of ANKRD50-depleted cells identified amino acid transporters of the SLC1A family, among them SLC1A4, as additional cargo molecules that depend on ANKRD50 and retromer for their endocytic recycling. Mechanistically, we show that ANKRD50 simultaneously engages multiple parts of the SNX27-retromer-WASH complex machinery in a direct and co-operative interaction network that is needed to efficiently recycle the nutrient transporters GLUT1 (also known as SLC2A1) and SLC1A4, and potentially many other surface proteins.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Mapas de Interação de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Espectrometria de Massas , Fosfoproteínas Fosfatases/química , Ligação Proteica , Proteólise , Proteômica , Nexinas de Classificação/metabolismo , Transferrina/metabolismo , Proteínas de Transporte Vesicular/química
15.
J Biol Chem ; 292(5): 1691-1704, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27903653

RESUMO

The class I PI3K family of lipid kinases plays an important role in integrin αIIbß3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbß3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbß3-expressing CHO cells blocked Rap1 activity and integrin αIIbß3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbß3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbß3-mediated outside-in signaling and cell spreading.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos/genética , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Receptores Citoplasmáticos e Nucleares/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
16.
Proc Natl Acad Sci U S A ; 111(35): E3604-13, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136126

RESUMO

The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed ß-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.


Assuntos
Endocitose/fisiologia , Domínios PDZ/genética , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Arrestina/química , Arrestina/genética , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Cristalografia por Raios X , Endossomos/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética , RNA Interferente Pequeno/genética , Ratos , Homologia de Sequência de Aminoácidos , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Semin Cell Dev Biol ; 31: 40-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24641888

RESUMO

The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These tubules are formed and stabilized through the scaffolding properties of cytosolic Bin/Amphiphysin/Rvs (BAR) proteins that comprise phosphoinositide-detecting moieties, recruiting these proteins to specific endosomal membrane areas. These include the protein family of sorting nexins that remodel endosome membrane into tubules by an evolutionary conserved mechanism of dimerization, local membrane curvature detection/induction and oligomerization. How the formation of such a tubular membrane carrier is coordinated with cargo capture is largely unknown. The tubular structure of the membrane carriers could sequester membrane-bound cargo through an iterative mechanism of geometric sorting. Furthermore, the recent identification of cargo adaptors for the endosome protein sorting complex retromer has expanded the sorting signals that retrieve specific sets of cargo away from lysosomal degradation through distinct membrane trafficking pathways.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos
18.
EMBO J ; 31(23): 4466-80, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23085988

RESUMO

Sorting nexins (SNXs) are regulators of endosomal sorting. For the SNX-BAR subgroup, a Bin/Amphiphysin/Rvs (BAR) domain is vital for formation/stabilization of tubular subdomains that mediate cargo recycling. Here, by analysing the in vitro membrane remodelling properties of all 12 human SNX-BARs, we report that some, but not all, can elicit the formation of tubules with diameters that resemble sorting tubules observed in cells. We reveal that SNX-BARs display a restricted pattern of BAR domain-mediated dimerization, and by resolving a 2.8 Å structure of a SNX1-BAR domain homodimer, establish that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective 'tip-loop' interactions. Overall, the restricted and selective nature of these interactions provide a molecular explanation for how distinct SNX-BAR-decorated tubules are nucleated from the same endosomal vacuole, as observed in living cells. Our data provide insight into the molecular mechanism that generates and organizes the tubular endosomal network.


Assuntos
Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Sequência de Bases , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Dimerização , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas de Transporte Vesicular/metabolismo
19.
J Cell Sci ; 127(Pt 22): 4940-53, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25278552

RESUMO

Retromer is a protein assembly that orchestrates the sorting of transmembrane cargo proteins into endosome-to-Golgi and endosome-to-plasma-membrane transport pathways. Here, we have employed quantitative proteomics to define the interactome of human VPS35, the core retromer component. This has identified a number of new interacting proteins, including ankyrin-repeat domain 50 (ANKRD50), seriologically defined colon cancer antigen 3 (SDCCAG3) and VPS9-ankyrin-repeat protein (VARP, also known as ANKRD27). Depletion of these proteins resulted in trafficking defects of retromer-dependent cargo, but differential and cargo-specific effects suggested a surprising degree of functional heterogeneity in retromer-mediated endosome-to-plasma-membrane sorting. Extending this, suppression of the retromer-associated WASH complex did not uniformly affect retromer cargo, thereby confirming cargo-specific functions for retromer-interacting proteins. Further analysis of the retromer-VARP interaction identified a role for retromer in endosome-to-melanosome transport. Suppression of VPS35 led to mistrafficking of the melanogenic enzymes, tyrosinase and tryrosine-related protein 1 (Tyrp1), establishing that retromer acts in concert with VARP in this trafficking pathway. Overall, these data reveal hidden complexities in retromer-mediated sorting and open up new directions in our molecular understanding of this essential sorting complex.


Assuntos
Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Transporte Proteico , Transfecção , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
20.
Neurogenetics ; 16(3): 215-221, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25894286

RESUMO

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers. We investigated a consanguineous family with four patients who presented in infancy with intractable myoclonic epilepsy and lack of psychomotor development. Using exome analysis, we identified a homozygous deleterious mutation in SNX27, which encodes sorting nexin 27, a retromer cargo adaptor. In western analysis of patient fibroblasts, the encoded mutant protein was expressed at an undetectable level when compared with a control sample. The patients' presentation and clinical course recapitulate that reported for the SNX27 knock-out mouse. Since the cargo proteins for SNX27-mediated sorting include subunits of ionotropic glutamate receptors and endosome-to-cell surface synaptic insertion of AMPA receptors is severely perturbed in SNX27(-/-) neurons, it is proposed that at least part of the neurological aberrations observed in the patients is attributed to defective sorting of ionotropic glutamate receptors. SNX27 deficiency is now added to the growing list of neurodegenerative disorders associated with retromer dysfunction.


Assuntos
Epilepsias Mioclônicas/genética , Doenças Neurodegenerativas/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA