RESUMO
Athletic programs are more frequently turning to computerized cognitive tools in order to increase efficiencies in concussion assessment. However, assessment using a traditional neuropsychological test battery may provide a more comprehensive and individualized evaluation. Our goal was to inform sport clinicians of the best practices for concussion assessment through a systematic literature review describing the psychometric properties of standard neuropsychological tests and computerized tools. We conducted our search in relevant databases including Ovid Medline, Web of Science, PsycINFO, and Scopus. Journal articles were included if they evaluated psychometric properties (e.g., reliability, sensitivity) of a cognitive assessment within pure athlete samples (up to 30 days post-injury). Searches yielded 4,758 unique results. Ultimately, 103 articles met inclusion criteria, all of which focused on adolescent or young adult participants. Test-retest reliability estimates ranged from .14 to .93 for computerized tools and .02 to .95 for standard neuropsychological tests, with strongest correlations on processing speed tasks for both modalities, although processing speed tasks were most susceptible to practice effects. Reliability was improved with a 2-factor model (processing speed and memory) and by aggregating multiple baseline exams, yet remained below acceptable limits for some studies. Sensitivity to decreased cognitive performance within 72 h of injury ranged from 45%-93% for computerized tools and 18%-80% for standard neuropsychological test batteries. The method for classifying cognitive decline (normative comparison, reliable change indices, regression-based methods) affected sensitivity estimates. Combining computerized tools and standard neuropsychological tests with the strongest psychometric performance provides the greatest value in clinical assessment. To this end, future studies should evaluate the efficacy of hybrid test batteries comprised of top-performing measures from both modalities.
RESUMO
PURPOSE: With the growing number of available targeted therapeutics and molecular biomarkers, the optimal care of patients with cancer now depends on a comprehensive understanding of the rapidly evolving landscape of precision oncology, which can be challenging for oncologists to navigate alone. METHODS: We developed and implemented a precision oncology decision support system, GI TARGET, (Gastrointestinal Treatment Assistance Regarding Genomic Evaluation of Tumors) within the Gastrointestinal Cancer Center at the Dana-Farber Cancer Institute. With a multidisciplinary team, we systematically reviewed tumor molecular profiling for GI tumors and provided molecularly informed clinical recommendations, which included identifying appropriate clinical trials aided by the computational matching platform MatchMiner, suggesting targeted therapy options on or off the US Food and Drug Administration-approved label, and consideration of additional or orthogonal molecular testing. RESULTS: We reviewed genomic data and provided clinical recommendations for 506 patients with GI cancer who underwent tumor molecular profiling between January and June 2019 and determined follow-up using the electronic health record. Summary reports were provided to 19 medical oncologists for patients with colorectal (n = 198, 39%), pancreatic (n = 124, 24%), esophagogastric (n = 67, 13%), biliary (n = 40, 8%), and other GI cancers. We recommended ≥ 1 precision medicine clinical trial for 80% (406 of 506) of patients, leading to 24 enrollments. We recommended on-label and off-label targeted therapies for 6% (28 of 506) and 25% (125 of 506) of patients, respectively. Recommendations for additional or orthogonal testing were made for 42% (211 of 506) of patients. CONCLUSION: The integration of precision medicine in routine cancer care through a dedicated multidisciplinary molecular tumor board is scalable and sustainable, and implementation of precision oncology recommendations has clinical utility for patients with cancer.