Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35914528

RESUMO

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Neurônios/fisiologia
2.
J Neurosci ; 41(32): 6796-6811, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34193555

RESUMO

A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.


Assuntos
Tronco Encefálico/metabolismo , MicroRNAs/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout
3.
Cell Tissue Res ; 379(1): 75-92, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713729

RESUMO

In the molecular biological and ultrastructural studies of the peritubular wall cells encasing the seminiferous tubules of mammalian testes, we found it necessary to characterize the outermost cell layer bordering on the interstitial space in detail. For half a century, the extremely thin cells of this monolayer have in the literature been regarded as part of a lymphatic endothelium, in particular in rodents. However, our double-label immunofluorescence microscopical results have shown that in all six mammalian species examined, including three rodent ones (rat, mouse, guinea pig), this classification is not correct: the very attenuated cells of this monolayer are not of lymphatic endothelial nature as they do not contain established endothelial marker molecules. In particular, they do not contain claudin-5-positive tight junctions, VE-cadherin-positive adherens junctions, "lymph vessel endothelium hyaluronan receptor 1" (LYVE-1), podoplanin, protein myozap and "von Willebrand Factor" (vWF). By contrast and as controls, all these established marker molecules for the lymphatic endothelial cell type are found in the endothelia of the lymph and-partly also-blood vessels located nearby in the interstitial space. Thus, our results provide evidence that the monolayer cells covering the peritubular wall do not contain endothelial marker molecules and hence are not endothelial cells. We discuss possible methodological reasons for the maintenance of this incorrect cell type classification in the literature and emphasize the value of molecular analyses using multiple cell type-specific markers, also with respect to physiology and medical sciences.


Assuntos
Células Endoteliais , Junções Intercelulares , Túbulos Seminíferos/ultraestrutura , Testículo/anatomia & histologia , Animais , Biomarcadores/análise , Células Endoteliais/citologia , Humanos , Imuno-Histoquímica , Junções Intercelulares/ultraestrutura , Masculino , Mamíferos/anatomia & histologia , Testículo/ultraestrutura
4.
Cell Tissue Res ; 379(1): 45-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858241

RESUMO

Lipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as "novel regulator of adipogenesis". This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved-together with perilipins-in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.


Assuntos
Adipócitos/metabolismo , Aldeído Oxidase/biossíntese , Gotículas Lipídicas/metabolismo , Adipócitos/enzimologia , Adipócitos/ultraestrutura , Animais , Células Cultivadas , Meios de Cultura , Humanos , Perilipinas/metabolismo , Xantina Desidrogenase/metabolismo
5.
Cell Tissue Res ; 359(3): 779-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25501894

RESUMO

Proteins of the striatin family (striatins 1-4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E-N-cadherin heterodimers and with the plaque proteins α- and ß-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the "multimodulator" scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.


Assuntos
Junções Aderentes/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Epitélio/metabolismo , Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Junções Aderentes/ultraestrutura , Animais , Anticorpos/metabolismo , Bovinos , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Enterócitos/metabolismo , Epitélio/ultraestrutura , Imunofluorescência , Humanos , Miocárdio/citologia , Ratos
6.
Cell Tissue Res ; 357(1): 159-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24770932

RESUMO

In a series of recent reports, mutations in the gene encoding a protein called LUMA (or TMEM43), widely speculated to be a tetraspan transmembrane protein of the nuclear envelope, have been associated with a specific subtype of cardiomyopathy (arrhythmogenic cardiomyopathies) and cases of sudden death. However, using antibodies of high specificity in immunolocalization experiments, we have discovered that, in mammals, LUMA is a component of zonula adhaerens and punctum adhaerens plaques of diverse epithelia and epithelial cell cultures and is also located in (or in some species associated with) the plaques of composite junctions (CJs) in myocardiac intercalated disks (IDs). In CJs, LUMA often colocalizes with several other CJ marker proteins. In all these cells, LUMA has not been detected in the nuclear envelope. Surprisingly, under certain conditions, similar CJ localizations have also been seen with some antibodies commercially available for some time. The identification of LUMA as a plaque component of myocardiac CJs leads to reconsiderations of the molecular composition and architecture, the development, the functions, and the pathogenic states of CJs and IDs. These findings now also allow the general conclusion that LUMA has to be added to the list of mutations of cardiomyocyte junction proteins that may be involved in cardiomyopathies.


Assuntos
Junções Aderentes/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfato de Queratano/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Animais , Bovinos , Fracionamento Celular , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Lumicana , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Suínos
7.
Cell Tissue Res ; 357(3): 645-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907851

RESUMO

The seminiferous tubules and the excurrent ducts of the mammalian testis are physiologically separated from the mesenchymal tissues and the blood and lymph system by a special structural barrier to paracellular translocations of molecules and particles: the "blood-testis barrier", formed by junctions connecting Sertoli cells with each other and with spermatogonial cells. In combined biochemical as well as light and electron microscopical studies we systematically determine the molecules located in the adhering junctions of adult mammalian (human, bovine, porcine, murine, i.e., rat and mouse) testis. We show that the seminiferous epithelium does not contain desmosomes, or "desmosome-like" junctions, nor any of the desmosome-specific marker molecules and that the adhering junctions of tubules and ductules are fundamentally different. While the ductules contain classical epithelial cell layers with E-cadherin-based adherens junctions (AJs) and typical desmosomes, the Sertoli cells of the tubules lack desmosomes and "desmosome-like" junctions but are connected by morphologically different forms of AJs. These junctions are based on N-cadherin anchored in cytoplasmic plaques, which in some subforms appear thick and dense but in other subforms contain only scarce and loosely arranged plaque structures formed by α- and ß-catenin, proteins p120, p0071 and plakoglobin, together with a member of the striatin family and also, in rodents, the proteins ZO-1 and myozap. These N-cadherin-based AJs also include two novel types of junctions: the "areae adhaerentes", i.e., variously-sized, often very large cell-cell contacts and small sieve-plate-like AJs perforated by cytoplasm-to-cytoplasm channels of 5-7 nm internal diameter ("cribelliform junctions"). We emphasize the unique character of this epithelium that totally lacks major epithelial marker molecules and structures such as keratin filaments and desmosomal elements as well as EpCAM- and PERP-containing junctions. We also discuss the nature, development and possible functions of these junctions.


Assuntos
Junções Aderentes/metabolismo , Diferenciação Celular , Epitélio Seminífero/metabolismo , Testículo/metabolismo , Junções Aderentes/ultraestrutura , Animais , Desmossomos/metabolismo , Imunofluorescência , Glicoproteínas/metabolismo , Masculino , Epitélio Seminífero/citologia , Epitélio Seminífero/ultraestrutura
8.
Cell Tissue Res ; 353(1): 99-115, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689684

RESUMO

Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions ("tessellate junctions"), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker.


Assuntos
Junções Aderentes/metabolismo , Epitélio/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3 , Animais , Anticorpos Monoclonais/imunologia , Bovinos , Linhagem Celular Tumoral , Membrana Celular , Desmossomos/metabolismo , Células Epiteliais , Genes Supressores de Tumor , Células HT29 , Células Hep G2 , Humanos , Células MCF-7 , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Camundongos , Ratos , Suínos
9.
Front Synaptic Neurosci ; 14: 1056308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466146

RESUMO

Four modes of endocytosis and subsequent synaptic vesicle (SV) recycling have been described at the presynapse to ensure the availability of SVs for synaptic release. However, it is unclear to what extend these modes operate under physiological activity patterns in vivo. The coat protein clathrin can regenerate SVs either directly from the plasma membrane (PM) via clathrin-mediated endocytosis (CME), or indirectly from synaptic endosomes by SV budding. Here, we examined the role of clathrin in SV recycling under physiological conditions by applying the clathrin inhibitor Pitstop-2 to the calyx of Held, a synapse optimized for high frequency synaptic transmission in the auditory brainstem, in vivo. The effects of clathrin-inhibition on SV recycling were investigated by serial sectioning scanning electron microscopy (S3EM) and 3D reconstructions of endocytic structures labeled by the endocytosis marker horseradish peroxidase (HRP). We observed large endosomal compartments as well as HRP-filled, black SVs (bSVs) that have been recently recycled. The application of Pitstop-2 led to reduced bSV but not large endosome density, increased volumes of large endosomes and shifts in the localization of both types of endocytic compartments within the synapse. These changes after perturbation of clathrin function suggest that clathrin plays a role in SV recycling from both, the PM and large endosomes, under physiological activity patterns, in vivo.

10.
PLoS One ; 9(2): e90386, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587346

RESUMO

We report on the heterogeneity and diversity of lipid droplets (LDs) in early stages of adipogenesis by elucidating the cell and molecular biology of amphiphilic and cytoskeletal proteins regulating and stabilizing the generation of LDs in human adipose cells. A plethora of distinct and differently sized LDs was detected by a brief application of adipocyte differentiation medium and additional short treatment with oleic acid. Using these cells and highly specific antibodies for LD-binding proteins of the perilipin (PLIN) family, we could distinguish between endogenously derived LDs (endogenous LDs) positive for perilipin from exogenously induced LDs (exogenous LDs) positive for adipophilin, TIP47 and S3-12. Having optimized these stimulation conditions, we used early adipogenic differentiation stages to investigate small-sized LDs and concentrated on LD-protein associations with the intermediate-sized filament (IF) vimentin. This IF protein was described earlier to surround lipid globules, showing spherical, cage-like structures. Consequently - by biochemical methods, by immunofluorescence microscopy and by electron- and immunoelectron microscopy - various stages of emerging lipid globules were revealed with perilipin as linking protein between LDs and vimentin. For this LD-PLIN-Vimentin connection, a model is now proposed, suggesting an interaction of proteins via opposed charged amino acid domains respectively. In addition, multiple sheaths of smooth endoplasmic reticulum cisternae surrounding concentrically nascent LDs are shown. Based on our comprehensive localization studies we present and discuss a novel pathway for the LD formation.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/metabolismo , Filamentos Intermediários/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vimentina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/ultraestrutura , Adipogenia/genética , Anticorpos/química , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem Celular , Meios de Cultura/química , Expressão Gênica , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/ultraestrutura , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ácido Oleico/farmacologia , Perilipina-2 , Perilipina-3 , Perilipina-4 , Fosfoproteínas/genética , Ligação Proteica , Proteínas de Transporte Vesicular/genética , Vimentina/genética
11.
PLoS One ; 8(5): e63061, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704888

RESUMO

Lipid droplets (LDs) are spherical accumulations of apolar lipids and other hydrophobic substances and are generally surrounded by a thin cortical layer of specific amphiphilic proteins (APs). These APs segregate the LDs from the mostly polar components of the cytoplasm. We have studied LDs in epithelium-derived cell cultures and in particular characterized proteins from the perilipin (PLIN) gene family - in mammals consisting of the proteins Perilipin, Adipophilin, TIP47, S3-12 and MLDP/OXPAT (PLIN 1-5). Using a large number of newly generated and highly specific mono- and polyclonal antibodies specific for individual APs, and using improved LD isolation methods, we have enriched and characterized APs in greater detail and purity. The majority of lipid-AP complexes could be obtained in the top layer fractions of density gradient centrifugation separations of cultured cells, but APs could also be detected in other fractions within such separations. The differently sized LD complexes were analyzed using various biochemical methods and mass spectrometry as well as immunofluorescence and electron- in particular immunoelectron-microscopy. Moreover, by immunoprecipitation, protein-protein binding assays and by immunoelectron microscopy we identified a direct linkage between LD-binding proteins and the intermediate-sized filaments (IF) cytokeratins 8 and 18 (also designated as keratins K8 and K18). Specifically, in gradient fractions of higher density supposedly containing small LDs, we received as co-precipitations cytidylyl-, palmitoyl- and cholesterol transferases and other specific enzymes involved in lipid metabolism. So far, common proteomic studies have used LDs from top layer fractions only and did not report on these transferases and other enzymes. In addition to findings of short alternating hydrophobic/hydrophilic segments within the PLIN protein family, we propose and discuss a model for the interaction of LD-coating APs with IF proteins.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Queratinas/metabolismo , Metabolismo dos Lipídeos , Animais , Proteínas de Transporte/ultraestrutura , Bovinos , Linhagem Celular , Centrifugação com Gradiente de Concentração , Células Epiteliais/efeitos dos fármacos , Imunofluorescência , Humanos , Imunoprecipitação , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Microscopia Confocal , Modelos Biológicos , Ácido Oleico/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
12.
PLoS One ; 7(4): e34206, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509281

RESUMO

Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, ß-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.


Assuntos
Vasos Sanguíneos/citologia , Células Endoteliais/citologia , Junções Intercelulares/metabolismo , Fígado/irrigação sanguínea , Idoso , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Claudina-5 , Claudinas/genética , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Ocludina , Especificidade de Órgãos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Junções Íntimas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA