Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 42(5): 850-63, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25979419

RESUMO

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER.


Assuntos
Antígenos/metabolismo , Linfócitos T CD8-Positivos , Apresentação Cruzada/imunologia , Citosol/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Animais , Antígenos/imunologia , Linhagem Celular , Citosol/imunologia , Proteínas de Membrana/química , Camundongos , Transporte Proteico , Canais de Translocação SEC
2.
Hepatology ; 75(1): 13-27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473365

RESUMO

BACKGROUND AND AIMS: Detection of autoantibodies is a mainstay of diagnosing autoimmune hepatitis (AIH). However, conventional autoantibodies for the workup of AIH lack either sensitivity or specificity, leading to substantial diagnostic uncertainty. We aimed to identify more accurate serological markers of AIH with a protein macroarray. APPROACH AND RESULTS: During the search for more-precise autoantibodies to distinguish AIH from non-AIH liver diseases (non-AIH-LD), IgG antibodies with binding capacities to many human and foreign proteins were identified with a protein macroarray and confirmed with solid-phase ELISAs in AIH patients. Subsequently, polyreactive IgG (pIgG) was exemplarily quantified by reactivity against human huntingtin-interacting protein 1-related protein in bovine serum albumin blocked ELISA (HIP1R/BSA). The diagnostic fidelity of HIP1R/BSA binding pIgG to diagnose AIH was assessed in a retrospective training, a retrospective multicenter validation, and a prospective validation cohort in cryoconserved samples from 1,568 adults from 10 centers from eight countries. Reactivity against HIP1R/BSA had a 25% and 14% higher specificity to diagnose AIH than conventional antinuclear and antismooth muscle antibodies, a significantly higher sensitivity than liver kidney microsomal antibodies and antisoluble liver antigen/liver pancreas antigen, and a 12%-20% higher accuracy than conventional autoantibodies. Importantly, HIP1R/BSA reactivity was present in up to 88% of patients with seronegative AIH and in up to 71% of AIH patients with normal IgG levels. Under therapy, pIgG returns to background levels of non-AIH-LD. CONCLUSIONS: pIgG could be used as a promising marker to improve the diagnostic workup of liver diseases with a higher specificity for AIH compared to conventional autoantibodies and a utility in autoantibody-negative AIH. Likewise, pIgG could be a major source of assay interference in untreated AIH.


Assuntos
Autoanticorpos/sangue , Hepatite Autoimune/diagnóstico , Imunoglobulina G/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Diagnóstico Diferencial , Feminino , Hepatite Autoimune/sangue , Hepatite Autoimune/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
3.
BMC Med ; 20(1): 102, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236358

RESUMO

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Assuntos
COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
4.
Biol Chem ; 403(5-6): 479-494, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35312243

RESUMO

One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.


Assuntos
Anticorpos Monoclonais , Peixe-Zebra , Animais , Anticorpos Monoclonais/química , Mapeamento de Epitopos , Epitopos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Coelhos
6.
Biospektrum (Heidelb) ; 27(1): 46-48, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-33612989

RESUMO

COR-101 is a fully human, Fc silenced IgG that was discovered by antibody phage display. It reduced the SARS-CoV-2 virus load in the lung by more than 99 percent in Hamster models and led to much faster recovery. Its mode of action has been elucidated by solving the atomic structure of its interaction with SARS-CoV-2. The antibody competes with ACE2 binding by blocking a large area of the SARS-CoV-2 spike protein.

7.
J Neurosci ; 39(20): 3948-3969, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862666

RESUMO

Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.


Assuntos
Cerebelo/metabolismo , Modelos Animais de Doenças , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Animais Geneticamente Modificados , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Feminino , Regulação da Expressão Gênica , Masculino , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Canais de Potássio Shaw/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Biospektrum (Heidelb) ; 26(4): 416-417, 2020.
Artigo em Alemão | MEDLINE | ID: mdl-32834539

RESUMO

Today, recombinant antibodies can replace animal-derived primary antibodies in almost all applications. Due to their monoclonal origin and always known sequence, they offer optimal reproducibility. In contrast, almost all secondary antibodies are still made from animal sera. Multiclonal antibodies made by animal-free recombinant methods here offer a higher quality replacement for serum-derived secondary antibodies.

9.
Biol Chem ; 400(3): 323-332, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30240352

RESUMO

Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE-/- mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer's specific activity.


Assuntos
Aterosclerose/diagnóstico por imagem , Imagem Molecular , Anticorpos de Domínio Único/química , Molécula 1 de Adesão de Célula Vascular/imunologia , Animais , Radioisótopos de Gálio , Radioisótopos de Índio , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo
10.
Dev Biol ; 430(1): 18-31, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28802829

RESUMO

Although having great potential for live cell imaging to address numerous cell biological questions with high spatial and temporal resolution, primary cell cultures of zebrafish embryos are not widely used. We present an easy-to-use protocol for preparing primary cell cultures of 2 dpf zebrafish embryos allowing for live cell imaging of fully differentiated cells such as neurons and myocytes. We demonstrate that different cell types can be identified by morphology and expression of transgenic cell type-specific fluorescent reporters and that fluorescent cells can be sorted by flow cytometry to prepare an enriched culture. To facilitate subcellular imaging in live primary cells, we successfully tested a selection of fluorescent vital dyes. Most importantly, we demonstrate that zebrafish primary cells can be transfected efficiently with expression constructs allowing for visualizing subcellular structures with fluorescent marker proteins for time lapse imaging. We propose zebrafish primary cell culture as a versatile tool to address cell biological questions in combination with a powerful in vivo model.


Assuntos
Embrião não Mamífero/citologia , Imageamento Tridimensional , Cultura Primária de Células/métodos , Transfecção/métodos , Peixe-Zebra/embriologia , Animais , Forma Celular , Células Cultivadas , Eletroporação , Embrião não Mamífero/metabolismo , Citometria de Fluxo , Macrófagos/citologia , Neurônios Motores/citologia , Neuroglia/citologia , Células de Purkinje/citologia , Coloração e Rotulagem , Frações Subcelulares/metabolismo , Transgenes
11.
Clin Immunol ; 186: 14-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28867254

RESUMO

Small molecules interfering with intracellular signalling pathways are used in the treatment of multiple diseases including RA. However, small molecules usually affect signalling in most cell types, not only in those which need to be targeted. This general inhibition of signalling pathways causes often adverse effects, which could be avoided by cell type-specific inhibitors. For cell-type specific modulation of signal transduction, we developed the sneaking ligand fusion proteins (SLFPs). SLFPs contain three domains: (1) the binding domain mediating cell type-specific targeting and endocytosis; (2) the endosomal release sequence releasing the effector domain into the cytoplasm; (3) the effector domain modulating signalling. Using our SLFP NF-kappaB inhibitor termed SLC1 we demonstrated that cell-type-specific modulation of intracellular signalling pathways is feasible, that endothelial NF-kappaB activation is critical for arthritis and peritonitis and that SLFPs help to identify disease-relevant pathways in defined cell types. Hence, SLFPs may improve risk-benefit ratios of therapeutic interventions.


Assuntos
Ligantes , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Humanos , NF-kappa B/antagonistas & inibidores , Domínios Proteicos , Toxinas Biológicas/química
13.
Mol Cell Proteomics ; 15(6): 1848-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26929218

RESUMO

The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-ß signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-ß signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-ß signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling.


Assuntos
Anticorpos de Cadeia Única/análise , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Biblioteca de Peptídeos , Fosforilação , Transdução de Sinais/efeitos dos fármacos
14.
Transfus Med Hemother ; 44(5): 312-318, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29070976

RESUMO

With six approved products and more than 60 candidates in clinical testing, human monoclonal antibody discovery by phage display is well established as a robust and reliable source for the generation of therapeutic antibodies. While a vast diversity of library generation philosophies and selection strategies have been conceived, the power of molecular design offered by controlling the in vitro selection step is still to be recognized by a broader audience outside of the antibody engineering community. Here, we summarize some opportunities and achievements, e.g., the generation of antibodies which could not be generated otherwise, and the design of antibody properties by different panning strategies, including the adjustment of kinetic parameters.

15.
J Immunol ; 193(7): 3332-43, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172488

RESUMO

CD4(+) T cells orchestrate immune responses against fungi, such as Aspergillus fumigatus, a major fungal pathogen in humans. The complexity of the fungal genome and lifestyle questions the existence of one or a few immune-dominant Ags and complicates systematic screening for immunogenic Ags useful for immunotherapy or diagnostics. In this study, we used a recently developed flow cytometric assay for the direct ex vivo characterization of A. fumigatus-specific CD4(+) T cells for rapid identification of physiological T cell targets in healthy donors. We show that the T cell response is primarily directed against metabolically active A. fumigatus morphotypes and is stronger against membrane protein fractions compared with cell wall or cytosolic proteins. Further analysis of 15 selected single A. fumigatus proteins revealed a highly diverse reactivity pattern that was donor and protein dependent. Importantly, the parallel assessment of T cell frequency, phenotype, and function allowed us to differentiate between proteins that elicit strong memory T cell responses in vivo versus Ags that induce T cell exhaustion or no reactivity in vivo. The regulatory T cell (Treg) response mirrors the conventional T cell response in terms of numbers and target specificity. Thus, our data reveal that the fungal T cell immunome is complex, but the ex vivo characterization of reactive T cells allows us to classify Ags and to predict potential immunogenic targets. A. fumigatus-specific conventional T cell responses are counterbalanced by a strong Treg response, suggesting that Treg-depletion strategies may be helpful in improving antifungal immunity.


Assuntos
Antígenos de Fungos/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Aspergilose/patologia , Aspergilose/terapia , Feminino , Humanos , Masculino , Linfócitos T Reguladores/patologia
16.
Adv Exp Med Biol ; 917: 77-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236553

RESUMO

ER intrabodies are recombinant antibody fragments produced and retained in the endoplasmatic reticulum (ER) of a cell or an organism with the purpose to induce phenotypes generated by interfering with the intracellular processing or by changing the location of the recognized antigen. The most common application is the generation of functional knockdowns of membrane proteins, which cannot reach their natural location on the cell surface when they are retained in the ER by the intrabody. Phenotypes generated by interfering with the secretion of extracellular or plasma proteins can be analyzed in a similar way. So far, most ER intrabody studies relied on scFv fragments subcloned from hybridoma lines. Recently, several large international research consortia have started to provide antibodies, with the final goal to cover substantial parts of the human proteome. For practical reasons of throughput and effort, in these consortia the most appropriate method to generate the necessary large numbers of monoclonal antibodies is in vitro selection, typically employing phage or yeast display. These methods provide the antibody genes right from the start, thereby facilitating the application of ER antibody approaches. On the other end, the first transgenic mice expressing an ER intrabody has recently been described. This moves the ER intrabody approach finally to level with classic in vivo knockout strategies - but also offers novel capabilities to the researchers. Promising new perspectives may originate from the fact that the knockdown is restricted to the protein level, that a graded knockdown strength can be achieved, or that the targeting of individual posttranslational modifications will be possible with previously impossible specificity. Finally, the link of today's high throughput recombinant antibody generation to a knock down phenotype is now possible with a single cloning step. It can therefore be expected that we will see a much quicker growth of the number of successful applications of ER intrabody technology in the near future than it has been seen in its first two decades.


Assuntos
Anticorpos/imunologia , Núcleo Celular/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes/métodos , Proteoma/imunologia , Animais , Anticorpos/genética , Anticorpos/metabolismo , Núcleo Celular/imunologia , Humanos , Camundongos
17.
Proc Natl Acad Sci U S A ; 110(41): 16556-61, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062461

RESUMO

Activation of the nuclear transcription factor κB (NF-κB) regulates the expression of inflammatory genes crucially involved in the pathogenesis of inflammatory diseases. NF-κB governs the expression of adhesion molecules that play a pivotal role in leukocyte-endothelium interactions. We uncovered the crucial role of NF-κB activation within endothelial cells in models of immune-mediated diseases using a "sneaking ligand construct" (SLC) selectively inhibiting NF-κB in the activated endothelium. The recombinant SLC1 consists of three modules: (i) an E-selectin targeting domain, (ii) a Pseudomonas exotoxin A translocation domain, and (iii) a NF-κB Essential Modifier-binding effector domain interfering with NF-κB activation. The E-selectin-specific SLC1 inhibited NF-κB by interfering with endothelial IκB kinase 2 activity in vitro and in vivo. In murine experimental peritonitis, the application of SLC1 drastically reduced the extravasation of inflammatory cells. Furthermore, SLC1 treatment significantly ameliorated the disease course in murine models of rheumatoid arthritis. Our data establish that endothelial NF-κB activation is critically involved in the pathogenesis of arthritis and can be selectively inhibited in a cell type- and activation stage-dependent manner by the SLC approach. Moreover, our strategy is applicable to delineating other pathogenic signaling pathways in a cell type-specific manner and enables selective targeting of distinct cell populations to improve effectiveness and risk-benefit ratios of therapeutic interventions.


Assuntos
Artrite/tratamento farmacológico , Artrite/imunologia , Células Endoteliais/imunologia , Regulação da Expressão Gênica/imunologia , NF-kappa B/antagonistas & inibidores , Proteínas Recombinantes de Fusão/imunologia , Animais , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Selectina E/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Células Endoteliais/efeitos dos fármacos , Escherichia coli , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/imunologia
18.
BMC Biotechnol ; 15: 57, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084577

RESUMO

BACKGROUND: Beside neurofibrillary tangles, amyloid plaques are the major histological hallmarks of Alzheimer's disease (AD) being composed of aggregated fibrils of ß-amyloid (Aß). During the underlying fibrillogenic pathway, starting from a surplus of soluble Aß and leading to mature fibrils, multiple conformations of this peptide appear, including oligomers of various shapes and sizes. To further investigate the fibrillization of ß-amyloid and to have tools at hand to monitor the distribution of aggregates in the brain or even act as disease modulators, it is essential to develop highly sensitive antibodies that can discriminate between diverse aggregates of Aß. RESULTS: Here we report the generation and characterization of a variety of amyloid-ß specific human and human-like antibodies. Distinct fractions of monomers and oligomers of various sizes were separated by size exclusion chromatography (SEC) from Aß42 peptides. These antigens were used for the generation of two Aß42 specific immune scFv phage display libraries from macaque (Macaca fascicularis). Screening of these libraries as well as two naïve human phage display libraries resulted in multiple unique binders specific for amyloid-ß. Three of the obtained antibodies target the N-terminal part of Aß42 although with varying epitopes, while another scFv binds to the α-helical central region of the peptide. The affinities of the antibodies to various Aß42 aggregates as well as their ability to interfere with fibril formation and disaggregation of preformed fibrils were determined. Most significantly, one of the scFv is fibril-specific and can discriminate between two different fibril forms resulting from variations in the acidity of the milieu during fibrillogenesis. CONCLUSION: We demonstrated that the approach of animal immunization and subsequent phage display based antibody selection is applicable to generate highly specific anti ß-amyloid scFvs that are capable of accurately discriminating between minute conformational differences.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Amiloide/química , Epitopos/imunologia , Doença de Alzheimer/patologia , Sequência de Aminoácidos/genética , Amiloide/imunologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Anticorpos/imunologia , Epitopos/química , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína
19.
BMC Biotechnol ; 15: 10, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25888378

RESUMO

BACKGROUND: Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library. RESULTS: The naive antibody gene libraries HAL9 and HAL10, with a combined theoretical diversity of 1.5×10(10) independent clones, were constructed from 98 healthy donors using improved phage display vectors. In detail, most common phagemids employed for antibody phage display are using a combined His/Myc tag for detection and purification. We show that changing the tag order to Myc/His improved the production of soluble antibodies, but did not affect antibody phage display. For several published antibody libraries, the selected number of kappa scFvs were lower compared to lambda scFvs, probably due to a lower kappa scFv or Fab expression rate. Deletion of a phenylalanine at the end of the CL linker sequence in our new phagemid design increased scFv production rate and frequency of selected kappa antibodies significantly. The HAL libraries and 834 antibodies selected against 121 targets were analyzed regarding the used germline V-genes, used V-gene combinations and CDR-H3/-L3 length and composition. The amino acid diversity and distribution in the CDR-H3 of the initial library was retrieved in the CDR-H3 of selected antibodies showing that all CDR-H3 amino acids occurring in the human antibody repertoire can be functionally used and is not biased by E. coli expression or phage selection. Further, the data underline the importance of CDR length variations. CONCLUSION: The highly diverse universal antibody gene libraries HAL9/10 were constructed using an optimized scFv phagemid vector design. Analysis of selected antibodies revealed that the complete amino acid diversity in the CDR-H3 was also found in selected scFvs showing the functionality of the naive CDR-H3 diversity.


Assuntos
Biblioteca de Peptídeos , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos , Autoantígenos/química , Autoantígenos/imunologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Anticorpos de Cadeia Única/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA