Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hippocampus ; 33(8): 970-992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37096324

RESUMO

How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.


Assuntos
Convulsões Febris , Estado Epiléptico , Ratos , Animais , Convulsões Febris/induzido quimicamente , Convulsões Febris/complicações , Convulsões Febris/metabolismo , Aprendizagem Espacial , Hipocampo/fisiologia , Córtex Entorrinal/fisiologia , Estado Epiléptico/induzido quimicamente , Giro Denteado/fisiologia
2.
Epilepsia ; 62(12): 3117-3130, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562024

RESUMO

OBJECTIVE: Febrile seizures (FSs) are the most common form of seizures in children. Single short FSs are benign, but FSs lasting longer than 30 min, termed febrile status epilepticus, may result in neurological sequelae. However, there is little information about an intermediary condition, brief recurrent FSs (RFSs). The goal of this study was to determine the role of RFSs on spatial learning and memory and the properties of spontaneous hippocampal signals. METHODS: A hippocampus-dependent active avoidance task was used to assess spatial learning and memory in adult rats that underwent experimental RFSs (eRFSs) in early life compared with their littermate controls. Following completion of the task, we utilized high-density laminar probes to measure spontaneous hippocampal CA1 circuit activity under urethane anesthesia, which allowed for the simultaneous recording of input regions in CA1 associated with both CA3 and entorhinal cortex. RESULTS: RFSs did not result in deficits in the active avoidance spatial test, a hippocampus-dependent test of spatial learning and memory. However, in vivo high-density laminar electrode recordings from eRFS rats had significantly altered power and frequency expression of theta and gamma bandwidths as well as signaling efficacy along the CA1 somatodendritic axis. Thus, although eRFS modified CA1 neuronal input/output dynamics, these alterations were not sufficient to impair active avoidance spatial behavior. SIGNIFICANCE: These findings indicate that although eRFSs do not result in spatial cognitive deficits in the active avoidance task, recurrent seizures do alter the brain and result in longstanding changes in the temporal organization of the hippocampus.


Assuntos
Convulsões Febris , Estado Epiléptico , Animais , Hipocampo/fisiologia , Ratos , Convulsões/induzido quimicamente , Convulsões/complicações , Convulsões Febris/induzido quimicamente , Convulsões Febris/complicações , Aprendizagem Espacial/fisiologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/complicações
3.
Epilepsia ; 62(3): 647-658, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33475157

RESUMO

OBJECTIVE: Prolonged fever-induced seizures (febrile status epilepticus [FSE]) during early childhood increase the risk for later epilepsy, but the underlying mechanisms are incompletely understood. Experimental FSE (eFSE) in rats successfully models human FSE, recapitulating the resulting epileptogenesis in a subset of affected individuals. However, the powerful viral and genetic tools that may enhance mechanistic insights into epileptogenesis and associated comorbidities, are better-developed for mice. Therefore, we aimed to determine if eFSE could be generated in mice and if it provoked enduring changes in hippocampal-network excitability and the development of spontaneous seizures. METHODS: We employed C57BL/6J male mice, the strain used most commonly in transgenic manipulations, and examined if early life eFSE could be sustained and if it led to hyperexcitability of hippocampal networks and to epilepsy. Outcome measures included vulnerability to the subsequent administration of the limbic convulsant kainic acid (KA) and the development of spontaneous seizures. In the first mouse cohort, adult naive and eFSE-experiencing mice were exposed to KA. A second cohort of control and eFSE-experiencing young adult mice was implanted with bilateral hippocampal electrodes and recorded using continuous video-electroencephalography (EEG) for 2 to 3 months to examine for spontaneous seizures (epileptogenesis). RESULTS: Induction of eFSE was feasible and eFSE increased the susceptibility of adult C57BL/6J mice to KA, thereby reducing latency to seizure onset and increasing seizure severity. Of 24 chronically recorded eFSE mice, 4 (16.5%) developed hippocampal epilepsy with a latent period of ~3 months, significantly different from the expectation by chance (P = .04). The limbic epilepsy that followed eFSE was progressive. SIGNIFICANCE: eFSE promotes pro-epileptogenic network changes in a majority of C57BL/6J male mice and frank "temporal lobe-like" epilepsy in one sixth of the cohort. Mouse eFSE may thus provide a useful tool for investigating molecular, cellular, and circuit changes during the development of temporal lobe epilepsy and its comorbidities.


Assuntos
Hipocampo/fisiopatologia , Convulsões Febris/etiologia , Estado Epiléptico/etiologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças/fisiopatologia , Eletrodos Implantados , Eletroencefalografia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Temperatura Alta/efeitos adversos , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões Febris/fisiopatologia , Estado Epiléptico/fisiopatologia , Pesquisa Translacional Biomédica
4.
J Cereb Blood Flow Metab ; 43(1): 84-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912523

RESUMO

Febrile status epilepticus (FSE) is an important risk factor for temporal lobe epilepsy and early identification of those at high risk for epilepsy is vital. In a rat model of FSE, we identified an acute (2 hrs) novel MRI signal where reduced T2 relaxation values in the basolateral amygdala (BLA) predicted epilepsy in adulthood; this T2 signal remains incompletely understood and we hypothesized that it may be influenced by vascular topology. Experimental FSE induced in rat pups reduced blood vessel density of the cortical vasculature in a lateralized manner at 2 hrs post FSE. Middle cerebral artery (MCA) exhibited abnormal topology in FSE pups but not in controls. In the BLA, significant vessel junction reductions and decreased vessel diameter were observed, together with a strong trend for reduced vessel length. Perfusion weighted MRI (PWI) was acutely increased cerebral blood flow (CBF) in cortex, amygdala and hippocampus of FSE pups that correlated to decreased T2 relaxation values compared to controls. This is consistent with increased levels of deoxyhemoglobin associated with increased metabolic demand. In summary, FSE acutely modifies vascular topological and CBF in cortex and BLA that may underlie acute MRI signal changes that predict progression to future epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Animais , Ratos , Estado Epiléptico/diagnóstico por imagem
5.
J Med Chem ; 63(3): 1261-1280, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31714779

RESUMO

We describe a set of benzisothiazolinone (BTZ) derivatives that are potent inhibitors of monoacylglycerol lipase (MGL), the primary degrading enzyme for the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Structure-activity relationship studies evaluated various substitutions on the nitrogen atom and the benzene ring of the BTZ nucleus. Optimized derivatives with nanomolar potency allowed us to investigate the mechanism of MGL inhibition. Site-directed mutagenesis and mass spectrometry experiments showed that BTZs interact in a covalent reversible manner with regulatory cysteines, Cys201 and Cys208, causing a reversible sulfenylation known to modulate MGL activity. Metadynamics simulations revealed that BTZ adducts favor a closed conformation of MGL that occludes substrate recruitment. The BTZ derivative 13 protected neuronal cells from oxidative stimuli and increased 2-AG levels in the mouse brain. The results identify Cys201 and Cys208 as key regulators of MGL function and point to the BTZ scaffold as a useful starting point for the discovery of allosteric MGL inhibitors.


Assuntos
Cisteína/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Tiazóis/farmacologia , Regulação Alostérica , Animais , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Ratos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
6.
Front Behav Neurosci ; 13: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833892

RESUMO

Early-life experiences influence brain structure and function long-term, contributing to resilience or vulnerability to stress and stress-related disorders. Therefore, understanding the mechanisms by which early-life experiences program specific brain cells and circuits to shape life-long cognitive and emotional functions is crucial. We identify the population of corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) as a key, early target of early-life experiences. Adverse experiences increase excitatory neurotransmission onto PVN CRH cells, whereas optimal experiences, such as augmented and predictable maternal care, reduce the number and function of glutamatergic inputs onto this cell population. Altered synaptic neurotransmission is sufficient to initiate large-scale, enduring epigenetic re-programming within CRH-expressing neurons, associated with stress resilience and additional cognitive and emotional outcomes. Thus, the mechanisms by which early-life experiences influence the brain provide tractable targets for intervention.

7.
J Endocr Soc ; 3(10): 1869-1880, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31583368

RESUMO

CONTEXT: Previous studies have shown that the endocannabinoid system plays a major role in energy metabolism through the actions of its main mediators, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA). OBJECTIVE: We examined serum levels of major endocannabinoid mediators and their association with clinical parameters in patients with end-stage renal disease (ESRD). DESIGN AND SETTING: Serum concentrations of 2-AG and AEA were measured in patients on maintenance hemodialysis (MHD) and controls, and correlations with various clinical and laboratory indices were examined. 2-AG was also measured in age and sex-matched healthy subjects for comparison of levels in patients undergoing MHD. MAIN OUTCOME MEASURE: Serum 2-AG. RESULTS: Serum 2-AG levels were significantly elevated in patients with ESRD compared with healthy controls. Higher levels of 2-AG were found in patients on MHD compared to healthy subjects, and similar findings were seen in a second set of subjects in independent analyses. Among 96 patients on MHD, 2-AG levels correlated significantly and positively with serum triglycerides (ρ = 0.43; P < 0.0001), body mass index (ρ = 0.40; P < 0.0001), and body anthropometric measures and negatively with serum high-density lipoprotein cholesterol (ρ = -0.33; P = 0.001) following adjustment for demographic and clinical variables. CONCLUSIONS: In patients on MHD, levels of serum 2-AG, a major endocannabinoid mediator, were increased. In addition, increasing serum 2-AG levels correlated with increased serum triglycerides and markers of body mass. Future studies will need to evaluate the potential mechanisms responsible for these findings.

8.
Psychopharmacology (Berl) ; 233(10): 1911-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873082

RESUMO

RATIONALE: The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. OBJECTIVES: To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. METHODS: We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. RESULTS: Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. CONCLUSIONS: The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.


Assuntos
Condicionamento Psicológico , Endocanabinoides/metabolismo , Recompensa , Animais , Cocaína/administração & dosagem , Gorduras na Dieta/administração & dosagem , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Monoacilglicerol Lipases/metabolismo , Núcleo Accumbens/metabolismo , Distribuição Aleatória , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Comportamento Social
9.
ChemMedChem ; 10(2): 380-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25338703

RESUMO

Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed to date; O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives were designed and synthesized exploiting a copper- catalyzed [3+2] cycloaddition reaction between azides and alkynes (click chemistry). Exploration of the structure-activity relationships within this new class of compounds identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. In addition, these derivatives showed improved stability in rat plasma and kinetic solubility in buffer with respect to the lead compound. Based on the results of the study, the novel analogues identified can be considered to be promising starting point for the development of new FAAH inhibitors with improved drug-like properties.


Assuntos
Amidoidrolases/antagonistas & inibidores , Carbamatos/química , Inibidores Enzimáticos/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Carbamatos/síntese química , Carbamatos/farmacocinética , Catálise , Química Click , Cobre/química , Reação de Cicloadição , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Células HEK293 , Meia-Vida , Humanos , Cinética , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
10.
Chem Biol ; 22(5): 619-28, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000748

RESUMO

The second messenger hydrogen peroxide transduces changes in the cellular redox state by reversibly oxidizing protein cysteine residues to sulfenic acid. This signaling event regulates many cellular processes but has never been shown to occur in the brain. Here, we report that hydrogen peroxide heightens endocannabinoid signaling in brain neurons through sulfenylation of cysteines C201 and C208 in monoacylglycerol lipase (MGL), a serine hydrolase that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in nerve terminals. The results suggest that MGL sulfenylation may provide a presynaptic control point for 2-AG-mediated endocannabinoid signaling.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Monoacilglicerol Lipases/química , Neurônios/metabolismo , Ácidos Sulfênicos/química , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células Cultivadas , Cisteína/química , Cisteína/metabolismo , Feminino , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Mutagênese Sítio-Dirigida , Neurônios/citologia , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA