RESUMO
Seven new indole-diterpenoids, penpaxilloids A-E (1-5), 7-methoxypaxilline-13-ene (6), and 10-hydroxy-paspaline (7), along with 20 known ones (8-27), were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. Among them, compound 1 was a spiro indole-diterpenoid bearing a 2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one motif. Compound 2 was characterized by a unique heptacyclic system featuring a rare 3,6,8-trioxabicyclo[3.2.1]octane unit. The structures of the new compounds were established by extensive spectroscopic analyses, NMR calculations coupled with the DP4 + analysis, and ECD calculations. The plausible biogenetic pathway of two unprecedented indole diterpenoids, penpaxilloids A and B (1 and 2), was postulated. Compound 1 acted as a noncompetitive inhibitor against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 8.60 ± 0.53 µM. Compound 17 showed significant α-glucosidase inhibitory activity with IC50 value of 19.96 ± 0.32 µM. Moreover, compounds 4, 8, and 22 potently suppressed nitric oxide production on lipopolysaccharide-stimulated RAW264.7 macrophages.
Assuntos
Diterpenos , Penicillium , Diterpenos/química , Anti-Inflamatórios/química , Macrófagos , Indóis/química , Penicillium/química , Estrutura MolecularRESUMO
Four new indole-diterpenoids, named penerpenes K-N (1-4), along with twelve known ones (5-16), were isolated from the fermentation broth produced by adding L-tryptophan to the culture medium of the marine-derived fungus Penicillium sp. KFD28. The structures of the new compounds were elucidated extensively by 1D and 2D NMR, HRESIMS data spectroscopic analyses and ECD calculations. Compound 4 represents the second example of paxilline-type indole diterpene bearing a 1,3-dioxepane ring. Three compounds (4, 9, and 15) were cytotoxic to cancer cell lines, of which compound 9 was the most active and showed cytotoxic activity against the human liver cancer cell line BeL-7402 with an IC50 value of 5.3 µM. Moreover, six compounds (5, 7, 10, 12, 14, and 15) showed antibacterial activities against Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Indóis/farmacologia , Penicillium , Animais , Antibacterianos/química , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Diterpenos/química , Humanos , Indóis/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacosRESUMO
A new steroid named persteroid (1) and seven known compounds (2-8) were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. The structure of 1 was determined by HRESIMS, NMR, and ECD calculations. Compound 1 showed inhibitory activity against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 46.31 ± 0.52 µM. Moreover, compound 1 potently suppressed nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The cytotoxicity and antibacterial activity of all isolates were tested.
RESUMO
Eight previously undescribed indole-diterpenoids named penerpenes O-V (1-8), together with seven known analogues (9-14), were isolated from the marine soft coral-derived fungus Aspergillus sp. ZF-104. Their structures including the absolute configurations of these compounds were assigned on the basis of spectroscopic data and ECD analysis along with quantum ECD and NMR calculations. Compounds 4 and 5 bear rare indolin-2-one units in their structures and 6 bears a reconstructed novel skeleton in which the indole ring and the terpenoid substructure are cleaved before they are reconnected through the nitrogen atom. Compounds 1, 2, 7, and 10 showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activities comparable to that of the positive control NaVO3.