Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 587(7833): 205-209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106686

RESUMO

An asteroid's history is determined in large part by its strength against collisions with other objects1,2 (impact strength). Laboratory experiments on centimetre-scale meteorites3 have been extrapolated and buttressed with numerical simulations to derive the impact strength at the asteroid scale4,5. In situ evidence of impacts on boulders on airless planetary bodies has come from Apollo lunar samples6 and images of the asteroid (25143) Itokawa7. It has not yet been possible, however, to assess directly the impact strength, and thus the absolute surface age, of the boulders that constitute the building blocks of a rubble-pile asteroid. Here we report an analysis of the size and depth of craters observed on boulders on the asteroid (101955) Bennu. We show that the impact strength of metre-sized boulders is 0.44 to 1.7 megapascals, which is low compared to that of solid terrestrial materials. We infer that Bennu's metre-sized boulders record its history of impact by millimetre- to centimetre-scale objects in near-Earth space. We conclude that this population of near-Earth impactors has a size frequency distribution similar to that of metre-scale bolides and originates from the asteroidal population. Our results indicate that Bennu has been dynamically decoupled from the main asteroid belt for 1.75 ± 0.75 million years.

2.
Nat Commun ; 15(1): 6204, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080000

RESUMO

The bearing capacity - the ability of a surface to support applied loads - is an important parameter for understanding and predicting the response of a surface. Previous work has inferred the bearing capacity and trafficability of specific regions of the Moon using orbital imagery and measurements of the boulder tracks visible on its surface. Here, we estimate the bearing capacity of the surface of an asteroid for the first time using DART/DRACO images of suspected boulder tracks on the surface of asteroid (65803) Didymos. Given the extremely low surface gravity environment, special attention is paid to the underlying assumptions of the geotechnical approach. The detailed analysis of the boulder tracks indicates that the boulders move from high to low gravitational potential, and provides constraints on whether the boulders may have ended their surface motion by entering a ballistic phase. From the 9 tracks identified with sufficient resolution to estimate their dimensions, we find an average boulder track width and length of 8.9 ± 1.5 m and 51.6 ± 13.3 m, respectively. From the track widths, the mean bearing capacity of Didymos is estimated to be 70 N/m2, implying that every 1 m2 of Didymos' surface at the track location can support only ~70 N of force before experiencing general shear failure. This value is at least 3 orders of magnitude less than the bearing capacity of dry sand on Earth, or lunar regolith.

3.
Nat Commun ; 15(1): 6205, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080257

RESUMO

Asteroids smaller than 10 km are thought to be rubble piles formed from the reaccumulation of fragments produced in the catastrophic disruption of parent bodies. Ground-based observations reveal that some of these asteroids are today binary systems, in which a smaller secondary orbits a larger primary asteroid. However, how these asteroids became binary systems remains unclear. Here, we report the analysis of boulders on the surface of the stony asteroid (65803) Didymos and its moonlet, Dimorphos, from data collected by the NASA DART mission. The size-frequency distribution of boulders larger than 5 m on Dimorphos and larger than 22.8 m on Didymos confirms that both asteroids are piles of fragments produced in the catastrophic disruption of their progenitors. Dimorphos boulders smaller than 5 m have size best-fit by a Weibull distribution, which we attribute to a multi-phase fragmentation process either occurring during coalescence or during surface evolution. The density per km2 of Dimorphos boulders ≥1 m is 2.3x with respect to the one obtained for (101955) Bennu, while it is 3.0x with respect to (162173) Ryugu. Such values increase once Dimorphos boulders ≥5 m are compared with Bennu (3.5x), Ryugu (3.9x) and (25143) Itokawa (5.1x). This is of interest in the context of asteroid studies because it means that contrarily to the single bodies visited so far, binary systems might be affected by subsequential fragmentation processes that largely increase their block density per km2. Direct comparison between the surface distribution and shapes of the boulders on Didymos and Dimorphos suggest that the latter inherited its material from the former. This finding supports the hypothesis that some asteroid binary systems form through the spin up and mass shedding of a fraction of the primary asteroid.

4.
Nat Commun ; 15(1): 6206, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080275

RESUMO

Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders' fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA's Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures' preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.

5.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33033038

RESUMO

We investigate the shape of near-Earth asteroid (101955) Bennu by constructing a high-resolution (20 cm) global digital terrain model from laser altimeter data. By modeling the northern and southern hemispheres separately, we find that longitudinal ridges previously identified in the north extend into the south but are obscured there by surface material. In the south, more numerous large boulders effectively retain surface materials and imply a higher average strength at depth to support them. The north has fewer large boulders and more evidence of boulder dynamics (toppling and downslope movement) and surface flow. These factors result in Bennu's southern hemisphere being rounder and smoother, whereas its northern hemisphere has higher slopes and a less regular shape. We infer an originally asymmetric distribution of large boulders followed by a partial disruption, leading to wedge formation in Bennu's history.

6.
Nat Geosci ; 12(4): 247-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31080497

RESUMO

The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu's shape. Here, we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu's top-like shape, considerable macroporosity, and prominent surface boulders suggest that it is a rubble pile. High-standing, north-south ridges that extend from pole to pole, many long grooves, and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin leading to its current shape. Today, Bennu might follow a different evolutionary pathway, with interior stiffness permitting surface cracking and mass wasting.

7.
J Health Care Mark ; 9(4): 5-17, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10304174

RESUMO

Based on the service quality and script theory literature, a framework of relationships among service quality, customer satisfaction, and behavioral intention for service purchases is proposed. Specific models are developed from the general framework and the models are applied and tested for the highly complex and divergent consumer service of overnight hospital care. Service quality, customer satisfaction, and behavioral intention data were collected from recent patients of two hospitals. The findings support the specific models and general framework. Implications for theory, service marketing, and future research are discussed.


Assuntos
Comportamento do Consumidor/estatística & dados numéricos , Hospitais com Fins Lucrativos/normas , Hospitais/normas , Qualidade da Assistência à Saúde/estatística & dados numéricos , Coleta de Dados , Manipulação de Alimentos , Los Angeles , Modelos Teóricos , Análise de Regressão , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA