Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(6): 100552, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076048

RESUMO

The yeast Saccharomyces cerevisiae is a widely-used eukaryotic model organism and a promising cell factory for industry. However, despite decades of research, the regulation of its metabolism is not yet fully understood, and its complexity represents a major challenge for engineering and optimizing biosynthetic routes. Recent studies have demonstrated the potential of resource and proteomic allocation data in enhancing models for metabolic processes. However, comprehensive and accurate proteome dynamics data that can be used for such approaches are still very limited. Therefore, we performed a quantitative proteome dynamics study to comprehensively cover the transition from exponential to stationary phase for both aerobically and anaerobically grown yeast cells. The combination of highly controlled reactor experiments, biological replicates, and standardized sample preparation procedures ensured reproducibility and accuracy. In addition, we selected the CEN.PK lineage for our experiments because of its relevance for both fundamental and applied research. Together with the prototrophic standard haploid strain CEN.PK113-7D, we also investigated an engineered strain with genetic minimization of the glycolytic pathway, resulting in the quantitative assessment of 54 proteomes. The anaerobic cultures showed remarkably less proteome-level changes compared with the aerobic cultures, during transition from the exponential to the stationary phase as a consequence of the lack of the diauxic shift in the absence of oxygen. These results support the notion that anaerobically growing cells lack resources to adequately adapt to starvation. This proteome dynamics study constitutes an important step toward better understanding of the impact of glucose exhaustion and oxygen on the complex proteome allocation process in yeast. Finally, the established proteome dynamics data provide a valuable resource for the development of resource allocation models as well as for metabolic engineering efforts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anaerobiose , Proteômica/métodos , Reprodutibilidade dos Testes , Glucose/metabolismo
2.
Yeast ; 41(4): 256-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37642136

RESUMO

Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.


Assuntos
RNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA/metabolismo , Íntrons , Transcriptoma , RNA Mitocondrial/metabolismo , Splicing de RNA , Mitocôndrias/genética , Mitocôndrias/metabolismo , Análise de Sequência de RNA , Glucose/metabolismo
3.
Nucleic Acids Res ; 49(3): 1769-1783, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33423048

RESUMO

The construction of microbial cell factories for sustainable production of chemicals and pharmaceuticals requires extensive genome engineering. Using Saccharomyces cerevisiae, this study proposes synthetic neochromosomes as orthogonal expression platforms for rewiring native cellular processes and implementing new functionalities. Capitalizing the powerful homologous recombination capability of S. cerevisiae, modular neochromosomes of 50 and 100 kb were fully assembled de novo from up to 44 transcriptional-unit-sized fragments in a single transformation. These assemblies were remarkably efficient and faithful to their in silico design. Neochromosomes made of non-coding DNA were stably replicated and segregated irrespective of their size without affecting the physiology of their host. These non-coding neochromosomes were successfully used as landing pad and as exclusive expression platform for the essential glycolytic pathway. This work pushes the limit of DNA assembly in S. cerevisiae and paves the way for de novo designer chromosomes as modular genome engineering platforms in S. cerevisiae.


Assuntos
Engenharia Celular , Cromossomos , Saccharomyces cerevisiae/genética , Glicólise/genética
4.
Metab Eng ; 72: 1-13, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35051627

RESUMO

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range of pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


Assuntos
Antocianinas , Engenharia Metabólica , Sistemas CRISPR-Cas , Cromossomos/genética , Cromossomos/metabolismo , Redes e Vias Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32471916

RESUMO

The thermotolerant yeast Ogataea parapolymorpha (formerly Hansenula polymorpha) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O2 consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type O. parapolymorpha strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h-1, both O. parapolymorpha strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations.IMPORTANCE Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory Ogataea parapolymorpha under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of O. parapolymorpha at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Glucose/metabolismo , Saccharomycetales/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Oxirredução , Pichia/enzimologia , Pichia/metabolismo , Saccharomycetales/enzimologia
6.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860055

RESUMO

Mass spectrometry-based proteomics has become a constitutional part of the multi-omics toolbox in yeast research, advancing fundamental knowledge of molecular processes and guiding decisions in strain and product developmental pipelines. Nevertheless, post-translational protein modifications (PTMs) continue to challenge the field of proteomics. PTMs are not directly encoded in the genome; therefore, they require a sensitive analysis of the proteome itself. In yeast, the relevance of post-translational regulators has already been established, such as for phosphorylation, which can directly affect the reaction rates of metabolic enzymes. Whereas, the selective analysis of single modifications has become a broadly employed technique, the sensitive analysis of a comprehensive set of modifications still remains a challenge. At the same time, a large number of fragmentation spectra in a typical shot-gun proteomics experiment remain unidentified. It has been estimated that a good proportion of those unidentified spectra originates from unexpected modifications or natural peptide variants. In this review, recent advancements in microbial proteomics for unrestricted protein modification discovery are reviewed, and recent research integrating this additional layer of information to elucidate protein interaction and regulation in yeast is briefly discussed.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
7.
Biotechnol Bioeng ; 117(3): 721-735, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31654410

RESUMO

Engineered strains of Saccharomyces cerevisiae are used for industrial production of succinic acid. Optimal process conditions for dicarboxylic-acid yield and recovery include slow growth, low pH, and high CO2 . To quantify and understand how these process parameters affect yeast physiology, this study investigates individual and combined impacts of low pH (3.0) and high CO2 (50%) on slow-growing chemostat and retentostat cultures of the reference strain S. cerevisiae CEN.PK113-7D. Combined exposure to low pH and high CO2 led to increased maintenance-energy requirements and death rates in aerobic, glucose-limited cultures. Further experiments showed that these effects were predominantly caused by low pH. Growth under ammonium-limited, energy-excess conditions did not aggravate or ameliorate these adverse impacts. Despite the absence of a synergistic effect of low pH and high CO2 on physiology, high CO2 strongly affected genome-wide transcriptional responses to low pH. Interference of high CO2 with low-pH signaling is consistent with low-pH and high-CO2 signals being relayed via common (MAPK) signaling pathways, notably the cell wall integrity, high-osmolarity glycerol, and calcineurin pathways. This study highlights the need to further increase robustness of cell factories to low pH for carboxylic-acid production, even in organisms that are already applied at industrial scale.


Assuntos
Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae , Ácidos Carboxílicos/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Análise do Fluxo Metabólico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
8.
FEMS Yeast Res ; 19(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285096

RESUMO

Hexose transporter-deficient yeast strains are valuable testbeds for the study of sugar transport by native and heterologous transporters. In the popular Saccharomyces cerevisiae strain EBY.VW4000, deletion of 21 transporters completely abolished hexose transport. However, repeated use of the LoxP/Cre system in successive deletion rounds also resulted in major chromosomal rearrangements, gene loss and phenotypic changes. In the present study, CRISPR/SpCas9 was used to delete the 21 hexose transporters in an S. cerevisiae strain from the CEN.PK family in only three deletion rounds, using 11 unique guide RNAs. Even upon prolonged cultivation, the resulting strain IMX1812 (CRISPR-Hxt0) was unable to consume glucose, while its growth rate on maltose was the same as that of a strain equipped with a full set of hexose transporters. Karyotyping and whole-genome sequencing of the CRISPR-Hxt0 strain with Illumina and Oxford Nanopore technologies did not reveal chromosomal rearrangements or other unintended mutations besides a few SNPs. This study provides a new, 'genetically unaltered' hexose transporter-deficient strain and supplies a CRISPR toolkit for removing all hexose transporter genes from most S. cerevisiae laboratory strains in only three transformation rounds.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Deleção de Genes , Genótipo , Cariotipagem , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
9.
Nucleic Acids Res ; 45(21): 12585-12598, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106617

RESUMO

Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Saccharomyces cerevisiae. FnCpf1 very efficiently and precisely promoted repair DNA recombination with efficiencies up to 100%. Furthermore, FnCpf1 was shown to introduce point mutations with high fidelity. While editing multiple loci with Cas9 is hampered by the need for multiple or complex expression constructs, processing itself a customized CRISPR array FnCpf1 was able to edit four genes simultaneously in yeast with a 100% efficiency. A remarkable observation was the unexpected, strong preference of FnCpf1 to cleave DNA at target sites harbouring 5'-TTTV-3' PAM sequences, a motif reported to be favoured by Cpf1 homologs of Acidaminococcus and Lachnospiraceae. The present study supplies several experimentally tested guidelines for crRNA design, as well as plasmids for FnCpf1 expression and easy construction of crRNA expression cassettes in S. cerevisiae. FnCpf1 proves to be a powerful addition to S. cerevisiae CRISPR toolbox.


Assuntos
Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Edição de Genes , Saccharomyces cerevisiae/genética , Endodesoxirribonucleases/genética , Francisella/enzimologia , Genoma Fúngico , Mutação Puntual , Sequências Repetitivas de Ácido Nucleico
10.
Proc Natl Acad Sci U S A ; 113(52): 15060-15065, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956602

RESUMO

Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of "pathway swapping," using yeast glycolysis as the experimental model. Construction of a "single-locus glycolysis" Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast's entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes.


Assuntos
Genoma Fúngico , Glicólise , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , Família Multigênica , Fenótipo , Engenharia de Proteínas , Biologia Sintética
11.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 231-242, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27818273

RESUMO

Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G1 phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica , Glucose/deficiência , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Actinas/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Meios de Cultura/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860374

RESUMO

Here, two methods are described for efficient genetic modification of Saccharomyces cerevisiae using CRISPR/Cas9. The first method enables the modification of a single genetic locus using in vivo assembly of a guide RNA (gRNA) expression plasmid without the need for prior cloning. A second method using in vitro assembled plasmids that could contain up to two gRNAs was used to simultaneously introduce up to six genetic modifications (e.g. six gene deletions) in a single transformation step by transforming up to three gRNA expression plasmids simultaneously. The method is not only suitable for gene deletion but is also applicable for in vivo site-directed mutagenesis and integration of multiple DNA fragments in a single locus. In all cases, the strain transformed with the gRNA expression plasmids was equipped with a genomic integration of Spcas9, leading to strong and constitutive expression of SpCas9. The protocols detailed here have been streamlined to be executed by virtually any yeast molecular geneticist.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Saccharomyces cerevisiae/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Deleção de Genes , Expressão Gênica , Genoma Fúngico/genética , Mutagênese Sítio-Dirigida , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transformação Genética
13.
Appl Environ Microbiol ; 82(15): 4570-4583, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208115

RESUMO

UNLABELLED: The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX /S (max)) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (µ) of 0.025 h(-1) to near-zero specific growth rates (µ < 0.001 h(-1)). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low µ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while µ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE: The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than baker's yeast.


Assuntos
Metabolismo Energético , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Cinética , Metanol/metabolismo , Pichia/química , Pichia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/metabolismo
14.
Microb Cell Fact ; 15(1): 111, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27317316

RESUMO

BACKGROUND: Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. RESULTS: Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h(-1) to below 0.001 h(-1), while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)(-1) h(-1), which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements revealed that cultures retained a high metabolic capacity. CONCLUSIONS: This study provides the most accurate estimation yet of the maintenance-energy coefficient in aerobic cultures of S. cerevisiae, which is a key parameter for modelling of industrial aerobic, glucose-limited fed-batch processes. The observed extreme heat-shock tolerance and high metabolic capacity at near-zero growth rates demonstrate the intrinsic potential of S. cerevisiae as a robust, non-dividing microbial cell factory for energy-intensive products.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Biomassa , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicólise , Saccharomyces cerevisiae/metabolismo , Temperatura , Transcriptoma
15.
Eukaryot Cell ; 14(8): 804-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071034

RESUMO

As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the "minimal glycolysis" [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.


Assuntos
Glicólise/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Fermentação/genética , Glucose/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochim Biophys Acta ; 1843(5): 1020-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24487068

RESUMO

The PAS kinase Rim15 is proposed to integrate signals from different nutrient-sensing pathways and to control transcriptional reprogramming of Saccharomyces cerevisiae upon nutrient depletion. Despite this proposed role, previous transcriptome analyses of rim15 mutants solely focused on growing cultures. In the present work, retentostat cultivation enabled analysis of the role of Rim15 under severely calorie-restricted, virtually non-growing conditions. Under these conditions, deletion of RIM15 affected transcription of over 10-fold more genes than in growing cultures. Transcriptional responses, metabolic rates and cellular morphology indicated a key role of Rim15 in controlled cell-cycle arrest upon nutrient depletion. Moreover, deletion of rim15 reduced heat-shock tolerance in non-growing, but not in growing cultures. The failure of rim15 cells to adapt to calorie restriction by entering a robust post-mitotic state resembles cancer cell physiology and shows that retentostat cultivation of yeast strains can provide relevant models for healthy post-mitotic and transformed human cells.


Assuntos
Restrição Calórica , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Meios de Cultura , Mutação , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Appl Environ Microbiol ; 81(17): 5662-70, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048933

RESUMO

The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Lactobacillus plantarum/crescimento & desenvolvimento , Lactococcus lactis/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Aspergillus niger/química , Aspergillus niger/genética , Aspergillus niger/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Microbiologia Industrial , Lactobacillus plantarum/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673752

RESUMO

Saccharomyces cerevisiae harbours a large group of tightly controlled hexose transporters with different characteristics. Construction and characterization of S. cerevisiae EBY.VW4000, a strain devoid of glucose import, was a milestone in hexose-transporter research. This strain has become a widely used platform for discovery and characterization of transporters from a wide range of organisms. To abolish glucose uptake, 21 genes were knocked out, involving 16 successive deletion rounds with the LoxP/Cre system. Although such intensive modifications are known to increase the risk of genome alterations, the genome of EBY.VW4000 has hitherto not been characterized. Based on a combination of whole genome sequencing, karyotyping and molecular confirmation, the present study reveals that construction of EBY.VW4000 resulted in gene losses and chromosomal rearrangements. Recombinations between the LoxP scars have led to the assembly of four neo-chromosomes, truncation of two chromosomes and loss of two subtelomeric regions. Furthermore, sporulation and spore germination are severely impaired in EBY.VW4000. Karyotyping of the EBY.VW4000 lineage retraced its current chromosomal architecture to four translocations events occurred between the 6th and the 12th rounds of deletion. The presented data facilitate further studies on EBY.VW4000 and highlight the risks of genome alterations associated with repeated use of the LoxP/Cre system.


Assuntos
DNA Fúngico/genética , Deleção de Genes , Genoma Fúngico , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Translocação Genética , Transporte Biológico , DNA Fúngico/química , Rearranjo Gênico , Hexoses/metabolismo , Cariotipagem , Saccharomyces cerevisiae/metabolismo
19.
FEMS Yeast Res ; 15(3)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25743788

RESUMO

Saccharomyces pastorianus lager-brewing yeasts have descended from natural hybrids of S. cerevisiae and S. eubayanus. Their alloploidy has undoubtedly contributed to successful domestication and industrial exploitation. To understand the early events that have led to the predominance of S. pastorianus as lager-brewing yeast, an interspecific hybrid between S. cerevisiae and S. eubayanus was experimentally constructed. Alloploidy substantially improved the performance of the S. cerevisiae × S. eubayanus hybrid as compared to either parent regarding two cardinal features of brewing yeasts: tolerance to low temperature and oligosaccharide utilization. The hybrid's S. eubayanus subgenome conferred better growth rates and biomass yields at low temperature, both on glucose and on maltose. Conversely, the ability of the hybrid to consume maltotriose, which was absent in the S. eubayanus CBS12357 type strain, was inherited from its S. cerevisiae parent. The S. cerevisiae × S. eubayanus hybrid even outperformed its parents, a phenomenon known as transgression, suggesting that fast growth at low temperature and oligosaccharide utilization may have been key selective advantages of the natural hybrids in brewing environments. To enable sequence comparisons of the parental and hybrid strains, the genome of S. eubayanus CBS12357 type strain (Patagonian isolate) was resequenced, resulting in an improved publicly available sequence assembly.


Assuntos
Quimera/crescimento & desenvolvimento , Quimera/metabolismo , Cruzamentos Genéticos , Saccharomyces/crescimento & desenvolvimento , Saccharomyces/metabolismo , Bebidas Alcoólicas/microbiologia , Quimera/genética , Meios de Cultura/química , Fermentação , Oligossacarídeos/metabolismo , Ploidias , Saccharomyces/genética , Saccharomyces/efeitos da radiação , Temperatura
20.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25743786

RESUMO

A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Engenharia Genética/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Saccharomyces cerevisiae/genética , Plasmídeos , Recombinação Genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA