Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(11): 8666-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23421262

RESUMO

Branched carbon nanostructures have been successfully grown on interdigital comb-like structures for a gas sensing application. Field emission scanning electron microscopy has been utilized to investigate the morphology and structure of the grown nanostructures at different stages of growth process. Tunneling current of the fabricated sensor has been measured when a monotonically increasing voltage is applied between the electrodes. The effect of exposure to three different gases on the measured current has been studied. A data processing on the measured current voltage characteristics results in the evolution of various peaks at distinct voltages which depends on the type of the gas.


Assuntos
Condutometria/instrumentação , Gases/análise , Gases/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento
2.
Nanotechnology ; 22(37): 375204, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21860083

RESUMO

A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

3.
Ultrasonics ; 92: 8-12, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30216782

RESUMO

Reconfigurable phononic crystals (PnCs) and related devices are highly attractive because of their flexibility for different applications. We present the design procedure for a tunable acoustic resonator based on a 2D PnC, consisting of a periodic array of piezoelectric rods of radii 175 µm as inclusions arranged in air background. A single point defect devised by a rod of radius 161 µm, replacing one of the inclusions, plays the role of the acoustic resonator, leading to a defect frequency in the phononic band gap (fd ≈ 432 kHz). Applying a ∼1% strain to the defect rod, via an external voltage, tunes the defect resonant frequency within the phononic band gap. It is shown that the maximum tunability and the frequency shift depends on the defect size, and is achieved about Δfd = 440 Hz for the defect with the expense of descending quality factor. Considering the pattern of the localized pressure field, we introduce a multi-defect structure with five symmetric defect rods, corresponding to the maxima of field distribution. It is shown that maximum frequency shift of the dominant defect frequency is achieved about Δfd = 1.14 kHz for defect radius of 161 µm, when all five defect rods are strained. The proposed tunable filter based on multi-defect structure results in an enhancement of about 2.6 times in the maximum frequency shift, in comparison with the single defect structure, and introduces a promising approach for realizing tunable acoustic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA