Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hepatology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38975812

RESUMO

BACKGROUND AND AIMS: Antimicrobial proteins of the REG3 family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear, since an immune- inflammatory context may preexist or coexist with cancer, as occurs in hepatocellular carcinoma (HCC). The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether carbohydrate-binding functions are involved. APPROACH AND RESULTS: This study provides evidence of the suppressive role of REG3A in HCC by reducing O-GlcNAcylation in two mouse models of HCC, in vitro cell studies, and in clinical samples. REG3A expression in hepatocytes significantly reduces global O- GlcNAcylation and O-GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibits HCC development in REG3A-c-MYC double transgenic mice and in mice exposed to diethylnitrosamine (DEN). REG3A modifies O-GlcNAcylation without altering the expression or activity of OGT, OGA, or GFAT. Reduced O-GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in pre-cancerous and cancerous livers. This effect is linked to the ability of REG3A to bind Glc and Glc-6P, suggested by a REG3A mutant unable to bind Glc and Glc- 6P and alter O-GlcNAcylation. Importantly, cirrhotic patients with high hepatic REG3A expression had lower levels of O-GlcNAcylation and longer cancer-free survival than REG3A- negative cirrhotic livers. CONCLUSION: REG3A helps fight liver cancer by reducing O-GlcNAcylation. This study suggests a new paradigm for the regulation of O-GlcNAc signalling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.

2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681731

RESUMO

Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10-48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.


Assuntos
Álcool Desidrogenase/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteômica/métodos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Humanos , Coeficiente Internacional Normatizado , Limite de Detecção , Espectrometria de Massas em Tandem
3.
Gastroenterology ; 154(4): 1009-1023.e14, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29133078

RESUMO

BACKGROUND & AIMS: Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS: We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS: The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS: Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.


Assuntos
Bactérias/metabolismo , Colite/prevenção & controle , Colo/metabolismo , Microbioma Gastrointestinal , Hepatócitos/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Viabilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Proteínas Associadas a Pancreatite/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Ácido Trinitrobenzenossulfônico
4.
J Proteomics ; 296: 105105, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325731

RESUMO

Vaccine reactogenicity is well documented at the clinical level but the mechanism involved at the local or systemic level are still poorly understood. Muscular tissue where most vaccines are administered is the first place of interaction between the vaccine formulation and the host's immune cells. So far, this site of vaccine administration is not well documented from a mechanistic standpoint. The study of early molecular events at the injection site is crucial to understand the local response to vaccines. In this paper, we report a standardized workflow, from the injection of vaccine formulations in rabbit muscle, to the analysis by desorption electrospray ionization and histology staining to understand the role of lipids involved in the inflammation and its resolution on striated muscular tissue. The analysis of lipid mediators was optimized at the site of needle insertion to allow the spatial comparison of cellular infiltrates at the injection site. We showed that lipids were distributed across the spatial tissue morphology in a time-dependent manner. The MS imaging applied to vaccinology could pave the way to a better understanding of vaccine reactogenicity and mechanism of action.


Assuntos
Vacinação , Vacinas , Animais , Coelhos , Espectrometria de Massas , Lipídeos , Músculo Esquelético/química , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
J Hepatol ; 58(2): 385-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22940407

RESUMO

Increased translocation of intestinal bacteria is a hallmark of chronic liver disease and contributes to hepatic inflammation and fibrosis. Here we tested the hypothesis that the intestinal microbiota and Toll-like receptors (TLRs) promote hepatocellular carcinoma(HCC), a long-term consequence of chronic liver injury, inflammation,and fibrosis. Hepatocarcinogenesis in chronically injured livers depended on the intestinal microbiota and TLR4 activation in nonbone-marrow-derived resident liver cells. TLR4 and the intestinal microbiota were not required for HCC initiation but for HCC promotion, mediating increased proliferation, expression of the hepatomitogen epiregulin, and prevention of apoptosis. Gut sterilization restricted to late stages of hepatocarcinogenesis reduced HCC, suggesting that the intestinal microbiota and TLR4 represent therapeutic targets for HCC prevention in advanced liver disease.

6.
Commun Biol ; 6(1): 269, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918710

RESUMO

Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.


Assuntos
Anti-Infecciosos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Humanos , Animais , Camundongos Obesos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Obesidade/genética , Insulina/farmacologia , Homeostase , Anti-Infecciosos/farmacologia
7.
Hepatology ; 53(2): 618-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21274882

RESUMO

UNLABELLED: Acute liver failure (ALF) is a rare syndrome with a difficult clinical management and a high mortality rate. During ALF, several molecular pathways governing oxidative stress and apoptosis are activated to induce massive tissue injury and suppress cell proliferation. There are few anti-ALF drug candidates, among which is the C-type lectin Reg3α, or human hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), which displayed promising properties for tissue regeneration and protection against cellular stress in transgenic mice. We report on substantial preclinical and clinical advances in the development of a recombinant (rc) full-length human HIP/PAP protein as an anti-ALF drug. The curative effects and mechanisms of action of rcHIP/PAP were investigated in murine Fas-induced ALF. Primary hepatocytes were cultured with cytotoxic doses of tumor necrosis factor α/actinomycin-D, transforming growth factor ß, agonistic Fas antibody or hydrogen peroxide, and various concentrations of rcHIP/PAP. Cell viability, proliferation index, apoptosis, and oxidation were monitored. We found that rcHIP/PAP significantly improved survival in Fas-intoxicated mice in a dose-dependent and time-dependent manner, with optimum effects when it was injected at advanced stages of ALF. Primary hepatocytes were efficiently protected against multiple cell death signals by rcHIP/PAP. This survival benefit was linked to a depletion of oxidized biomolecules in injured liver cells due to a strong reactive oxygen species scavenging activity of rcHIP/PAP. Clinically, an escalating dose phase 1 trial demonstrated a good tolerability and pharmacokinetic profile of rcHIP/PAP in healthy subjects. CONCLUSION: The rcHIP/PAP protein exhibited significant curative properties against ALF in mice. It is a free-radical scavenger that targets a broad spectrum of death effectors and favors liver regeneration. The good safety profile of rcHIP/PAP during a phase 1 trial encourages evaluation of its efficacy in patients with ALF.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Biomarcadores Tumorais/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Radicais Livres/metabolismo , Lectinas Tipo C/uso terapêutico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Receptor fas/efeitos adversos , Adolescente , Adulto , Animais , Antígenos de Neoplasias/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/farmacocinética , Biomarcadores Tumorais/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Método Duplo-Cego , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Falência Hepática Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Associadas a Pancreatite , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , Adulto Jovem
8.
Nat Commun ; 12(1): 6686, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795236

RESUMO

Mus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Organismos Livres de Patógenos Específicos , Sequenciamento Completo do Genoma/métodos , Animais , Bactérias/classificação , Bactérias/genética , Peso Corporal/genética , Peso Corporal/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Masculino , Metagenômica/métodos , Camundongos Endogâmicos C57BL , Fenótipo , Especificidade da Espécie
9.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855247

RESUMO

The GM15 community is a bacterial consortium used to generate a novel standardized mouse model with a simplified controlled intestinal microbiota recapitulating the specific opportunistic pathogen-free (SOPF) mouse phenotype and the potential to ensure an increased reproducibility and robustness of preclinical studies by limiting the confounding effect of microbiota composition fluctuation.

11.
PLoS One ; 10(5): e0125584, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938566

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. METHODS: Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. RESULTS: Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. CONCLUSIONS: Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Espaço Extracelular/metabolismo , Lectinas Tipo C/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Estresse Oxidativo , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Fibrina/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas Associadas a Pancreatite , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA