RESUMO
BACKGROUND: Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. RESULTS: Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12) gene, soon after platyrrhine/catarrhine divergence, i.e. 30-35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants) or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. CONCLUSION: Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.
Assuntos
Hormônios Hipotalâmicos/genética , Precursores de Proteínas/genética , Splicing de RNA , RNA não Traduzido/genética , Adulto , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Cromossomos Humanos Par 5/genética , Evolução Molecular , Éxons , Humanos , Íntrons , Macaca/genética , Masculino , Dados de Sequência Molecular , Filogenia , Primatas , RNA não Traduzido/metabolismo , Alinhamento de Sequência , Testículo/metabolismoRESUMO
A comparative analysis of the structure of the melanin-concentrating hormone (MCH) precursor reveals that this sequence has been subjected to a higher selection pressure in mammals than in teleosts, suggesting that the structural constraints have not been the same throughout the vertebrate lineage. In contrast, the MCH peptide sequence has been very well conserved in all species. A sensitive and reproducible eel skin assay was developed and allowed us to define the structural features needed for a full MCH bioactivity. It was shown that the minimal structure carrying the critical residues was the same in fishes and in mammals. A pharmacological approach confirmed that MCH receptor activation decreased the cAMP levels in the fish skin, but this effect appeared to be independent from a Galphai protein. We propose that one of the intracellular signaling pathways of the MCH receptor in fish skin is the activation of one or several cellular phosphodiesterases.