Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Am Chem Soc ; 146(26): 17995-18001, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957138

RESUMO

High-entropy alloys (HEAs) or multi-principal element alloys (MPEAs) have found extensive applications in high-precision devices. While the increased configurational entropy for HEAs favors more elemental diversity, it also increases the possibility of phase separation into multiple heterogeneous systems. This article reports that these two mutually competing effects are balanced for 3- and 4-component alloys. Analysis of all of the n-component ABCD···-type (∼5 × 105) available compounds in the materials' database shows that more than 70% are either 3- or 4-component ones. Their high propensity is explained on the basis of their optimal average difference of electronegativity (EN) ∼0.5-1.0 and the average sum of electronegativity (EN) ∼5.0-6.5 between the constituent atoms in the Oganov scale. Effectively, these 3- and 4-component alloys lie in the intermediate (centroid) region of the van Arkel-Ketelaar triangle, indicating their metalloid nature.

2.
Small ; 20(10): e2304794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888827

RESUMO

The advantage of a pre-organized π-cavity of Fe(II) complex of a newly developed macrobicycle cryptand is explored for CO2 reduction by overcoming the problem of high overpotential associated with the inert nature of the cryptate. Thus, a bipyridine-centered tritopic macrobicycle having a molecular π-cavity capable of forming Fe(II) complex as well as potential for CO2 encapsulation is synthesized. The inert Fe(II)-cryptate shows much lower potential in cyclic voltammetry than the Fe(II)-tris-dimethylbipyridine (Fe-MBP) core. Interestingly, this cryptate shows electrochemical CO2 reduction at a considerably lower potential than the Fe-MBP inert core. Therefore, this study represents that a well-structured π-cavity may generate a new series of molecular catalysts for the CO2 reduction reaction (CO2 RR), even with the inert metal complexes.

3.
Chemphyschem ; 25(12): e202400046, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38528649

RESUMO

In this study, we employ an evolutionary algorithm in conjunction with first-principles density functional theory (DFT) calculations to comprehensively investigate the structural transitions, electronic properties, and chemical bonding behaviors of XI3 compounds, where X denotes phosphorus (P) and arsenic (As), across a range of elevated pressures. Our computational analyses reveal a distinctive phenomenon occurring under compression, wherein the initially trigonal structures of PI3 (P 63) and AsI3 (R-3) undergo an intriguing transformation, leading to the emergence of six-coordinated monoclinic phases (C2/m) at 6 GPa and 2 GPa for PI3 and AsI3, respectively. These high-pressure phases exhibit their stability up to 10 GPa for PI3 and 12 GPa for AsI3. Notably, the resulting structures at elevated pressures bear striking resemblance to the widely recognized six-coordinated octahedral BiI3 crystal configuration observed at ambient conditions. Our investigation further underscores the pivotal role of pressure-induced reactivity of the lone-pair electrons in PI3 and AsI3, facilitating their enhanced stereochemical reactivity and thereby enabling higher six-fold coordination. Complementary analyses employing electron localization function (ELF) and density of states (DOS) effectively delineate the progression towards augmented coordination in PI3 and AsI3 with increasing pressure. While the phenomenon of heightened coordination is conventionally associated with heavier pnictide iodides such as SbI3 and BiI3 under ambient conditions due to heightened ionic character and relativistic effects in bismuth (Bi) and antimony (Sb), our findings accentuate that analogous structural transformations can also be induced in lighter elements like phosphorus (P) and arsenic (As) under the influence of pressure.

4.
Chemphyschem ; 25(5): e202300720, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38087878

RESUMO

Osmium carbonyls are well known to form stable 18-electron complexes like Os(CO)5 , Os2 (CO)9 and Os3 (CO)12 having both bridging and terminal carbonyls. For osmium tetra-carbonyl, Os(CO)4 solid-state packing significantly alters the ground-state structure. The gas-phase stable see-saw geometry converts to a square-planar structure in solid state. Highly efficient intermolecular stacking between Os(CO)4 units assists this transformation. Each Os(CO)4 molecule is stacked in a staggered orientation with respect to each other. Pressure induces a [Xe]4f14 5d6 6s2 (S=2)→[Xe]4f14 5d8 (S=0) electronic transition in osmium stabilize a square planar osmium tetra-carbonyl. Under the influence of isotropic pressure, the molecules not only come closer to each other but their relative orientations also get significantly altered. Calculations show that at P=1 GPa and above, the eclipsed orientation for the intermolecular stacking gets preferred over the staggered form. The staggered→eclipsed intermolecular stacking orientation under pressure is shown to be controlled by London dispersion interactions.

5.
J Org Chem ; 89(13): 9223-9232, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38885175

RESUMO

Enantioselective C(sp3)-H activation has garnered significant attention in synthetic and computational chemistry. Chiral transient directing groups (TDGs) hold promise for enabling Pd(II)-catalyzed enantioselective C(sp3)-H functionalization. Despite the interest in this strategy, it presents a challenge because the stereogenic center on the chiral TDG is frequently distant from the C-H bond, leading to a mixture of functionalized products. Our computational study on Pd(II)-catalyzed enantioselective ß-C(sp3)-H arylation of aliphatic ketone with chiral amino acids provides a sustainable route to synthesizing complex chiral molecular scaffolds. The cooperative action of 2-pyridone derivatives and chiral amino acids is crucial in promoting the enantio-discriminating C-H activation, oxidative addition, and reductive elimination steps. Using 5-nitro-2-pyridone as the optimal external ligand demonstrates its ability to achieve the highest level of enantioselection. In contrast, the modeled 3,5-di((trifluoromethyl)sulfonyl)-2-pyridone ligand facilitates the most straightforward C-H activation. This study underscores the pivotal role of the alkyl substituent at the α-position of the amino acid (TDG) in altering enantioselectivity.

6.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38682739

RESUMO

In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/química , Teoria Quântica
7.
J Am Chem Soc ; 145(24): 13484-13490, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37291056

RESUMO

Mechanical force can trigger the predictable and precise release of small molecules from macromolecular carriers. In this article, based on mechanochemical simulations, we show that norborn-2-en-7-one (NEO), I, and its derivatives can selectively release CO, N2, and SO2 and produce two distinctly different products, A ((3E,5Z,7E)-dimethyl-5,6-diphenyldeca-3,5,7-triene-1,10-diyl bis(2-bromo-2-methylpropanoate)) and B (4',5'-dimethyl-4',5'-dihydro-[1,1':2',1''-terphenyl]-3',6'-diyl)bis(ethane-2,1-diyl) bis(2-bromo-2-methylpropanoate). Site-specific design in the pulling points (PP) ensures that by changing the regioselectivity, either A or B can be exclusively generated. Controlling the rigidity of the NEO scaffold by replacing a 6-membered ring with an 8-membered ring and concomitantly tuning the pulling groups makes it mechanolabile toward the selective formation of B. The diradical intermediate formed during I → A is predicted to be persistent for ∼150 fs. The structural design holds the key to the trade-off between mechanochemical rigidity and lability.

8.
J Org Chem ; 88(2): 917-923, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36598469

RESUMO

1,3-Dienes (1) react with SO2 to produce sulfolenes (2) and sultines (3). Previous experiments and computational studies have shown that hetero-Diels-Alder (HDA) reaction producing the sultine is kinetically favorable compared to the chelotropic (CE) reaction producing the sulfolene. In this article, DFT calculations for a series of substituted 1,3-dienes show that under the influence of a moderate oriented external electric field (OEEF) of 2.0-4.0 V nm-1 along the reaction axis, the chelotropic reaction becomes the kinetically favorable reaction. In the absence of the OEEF, the destabilizing distortion involved in bringing the 1,3-diene and SO2 to the CE transition-state (TS) exceeds than for the HDA TS. However, under the influence of the OEEF, the strongly stabilizing electrostatic interactions in the CE TS effectively overcome the structural distortion energy. The enhanced dipole moment of the CE TS vis-à-vis the HDA TS under the OEEF accounts for the stabilization of the former.

9.
Org Biomol Chem ; 21(21): 4473-4481, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37194351

RESUMO

Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.


Assuntos
Aminoácidos , Histidina , Histidina/química , Ésteres , Catálise , Serina
10.
Phys Chem Chem Phys ; 25(28): 19091-19097, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427602

RESUMO

Materials that shrink during heating are important for advanced applications. Graphene has shown negative thermal expansion (NTE) up to 1000 K, which drives further research towards new two-dimensional allotropes of carbon to achieve higher performance. In this article, we have shown high NTE for Graphynes having sp-sp connectivity and that are stable at high temperature. The effect of heteroatom substitution in NTE for some graphynes and their periodic trends are also studied. Quasi-harmonic approximation (QHA) calculations show that thermal expansion remains negative at least until 1000 K for some graphynes. The results are in good agreement with ab-initio molecular dynamics (AIMD) simulations. The high NTE in the graphynes is understood based on their rigid unit modes (RUMs).

11.
Proc Natl Acad Sci U S A ; 117(12): 6383-6390, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156731

RESUMO

Active and stable metal-free heterogeneous catalysts for CO2 fixation are required to reduce the current high level of carbon dioxide in the atmosphere, which is driving climate change. In this work, we show that defects in nanosilica (E' centers, oxygen vacancies, and nonbridging oxygen hole centers) convert CO2 to methane with excellent productivity and selectivity. Neither metal nor complex organic ligands were required, and the defect alone acted as catalytic sites for carbon dioxide activation and hydrogen dissociation and their cooperative action converted CO2 to methane. Unlike metal catalysts, which become deactivated with time, the defect-containing nanosilica showed significantly better stability. Notably, the catalyst can be regenerated by simple heating in the air without the need for hydrogen gas. Surprisingly, the catalytic activity for methane production increased significantly after every regeneration cycle, reaching more than double the methane production rate after eight regeneration cycles. This activated catalyst remained stable for more than 200 h. Detailed understanding of the role of the various defect sites in terms of their concentrations and proximities as well as their cooperativity in activating CO2 and dissociating hydrogen to produce methane was achieved.

12.
Angew Chem Int Ed Engl ; 62(46): e202313712, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37732556

RESUMO

The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(-)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+ /ClO4 - symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Šand single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio of P C l - / P K + = 0 . 053 ± 0 . 02 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=0.053\pm 0.02}$ , P C l O 4 - / P C l - = 2 . 1 ± 0 . 5 ${{P}_{{ClO}_{4}^{-}}/{P}_{{Cl}^{-}}=2.1\pm 0.5}$ , and P K + / P N a + = 1 . 5 ± 1 , ${{P}_{{K}^{+}}/{P}_{{Na}^{+}}=1.5\pm 1,}$ indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.

13.
Angew Chem Int Ed Engl ; 62(27): e202305462, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129995

RESUMO

The fixing of N2 to NH3 is challenging due to the inertness of the N≡N bond. Commercially, ammonia production depends on the energy-consuming Haber-Bosch (H-B) process, which emits CO2 while using fossil fuels as the sources of hydrogen and energy. An alternative method for NH3 production is the electrochemical nitrogen reduction reaction (NRR) process as it is powered by renewable energy sources. Here, we report a tiara-like nickel-thiolate cluster, [Ni6 (PET)12 ] (where, PET=2-phenylethanethiol)] as an efficient electro-catalyst for the electrochemical NRR at ambient conditions. Ammonia (NH3 : 16.2±0.8 µg h-1 cm-2 ) was the only nitrogenous product over the potential of -2.3 V vs. Fc + /Fc with a Faradaic efficiency of 25%±1.7. Based on theoretical calculations, NRR by [Ni6 (PET)12 ] proceeds through both the distal and alternating pathways with an onset potential of -1.84 V vs. RHE (i.e., -2.46 V vs. Fc + /Fc ) which corroborates with the experimental findings.

14.
J Am Chem Soc ; 144(37): 16703-16707, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069493

RESUMO

Materials which contract on heating (negative thermal expansion, NTE) are of significant interest for advanced applications. Graphene has shown NTE up to 1000 K, which motivates further improvements in two-dimensional carbon to attain superior performance. In this Communication, very large negative thermal expansion coefficients (αT) are reported for tri-graphene (TrG) and T-graphene (TG). Quasi-harmonic approximation calculations show that αT remains negative until 4200 K and 2900 K for TrG and TG, respectively. The high NTE for these systems is understood on the basis of the soft phonon modes, which induce rotation of the 3-membered and the 4-membered rings in TrG and TG, respectively, and ab initio molecular dynamics simulations. The local distortions for the 3-12 rings (in TrG) and 4-8 rings (in TG) have structural resemblance with the rigid-unit modes that are usually envisioned for bulk systems.

15.
Bioconjug Chem ; 33(6): 1145-1155, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537180

RESUMO

Peptide nucleic acids (PNAs), besides hybridizing to complementary DNA and RNAs, bind and stabilize DNA secondary structures. Herein, we illustrate the design and synthesis of PNA-like scaffolds by incorporating five-membered thiazole rings as modified bases instead of nucleobases and their subsequent effects on gene regulation by biophysical and in vitro assays. A thiazole-modified PNA trimer selectively recognizes c-MYC G-quadruplex (G4) DNA over other G4s and duplex DNA. It displays a high stabilization potential for the c-MYC G4 DNA and shows remarkable fluorescence enhancement with the c-MYC G4. It is flexible enough to bind at 5' and 3' ends as well as in the groove region of c-MYC G4. Furthermore, the PNA trimer easily permeates the cellular membrane and suppresses c-MYC mRNA expression in HeLa cells by targeting the promoter G4. This study illuminates modified PNAs as flexible molecular tools for selective targeting of noncanonical nucleic acids and modulating gene function.


Assuntos
Quadruplex G , Ácidos Nucleicos Peptídicos , DNA/química , DNA/genética , Expressão Gênica , Células HeLa , Humanos , Ácidos Nucleicos Peptídicos/química , Tiazóis
16.
Chemphyschem ; 23(15): e202200013, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35467795

RESUMO

The rational design and development of earth-abundant, cost-effective, environmentally benign, and highly robust oxygen reduction reaction (ORR) electrocatalysts can circumvent the obstacles associated with the large-scale commercialization of fuel cells. Here, using first-principles-based density functional theory (DFT), we have computationally screened the potential and feasibility of transition-metal phosphorous trisulfides (TMPS3 ) (100) surfaces as efficient ORR electrocatalyst in acidic fuel cell application. MnPS3 (100) surface emerges to be the best among TMPS3 surfaces with optimal O2 activation resulting in very low overpotential. The study reveals that ORR occurs on the MnPS3 surface via 4e reduction associative pathway where the kinetically rate-determining step (RDS) is the formation of O*+H2 O with an activation barrier of 0.66 eV. Additionally, high CO tolerance and easy desorption of H2 O make MnPS3 a robust catalyst. Substitution in half of the Mn sites of MnPS3 (100) surface with Co considerably enhances the ORR activity. Mn0.5 Co0.5 PS3 (100) surface exhibits an ultralow overpotential of 0.39 V vs RHE switching ORR pathway from associative to dissociative. Spontaneous dissociation of H2 O2 on Mn0.5 Co0.5 PS3 proves 4e reduction pathway excluding 2e one. Electronic structure analysis reveals that pristine MnPS3 (100) surface is a narrow band gap semiconductor which upon Co substitution transforms into a conducting metallic surface enhancing ORR activity. Besides, Mn0.5 Co0.5 PS3 (100) surface obtains the apex of the volcano plot due to its optimal position of the d-band center which further justifies the improved ORR activity. With Pt-like onset potential, facile H2 O desorption ability, and robust dynamic and thermal stability, this CO tolerant Mn0.5 Co0.5 PS3 catalyst can be a potential alternative to Pt with encouraging practical viability.


Assuntos
Catálise
17.
J Org Chem ; 87(14): 9222-9231, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35771188

RESUMO

The lack of directionality and the long-range nature of Coulomb interactions have been a bottleneck to achieve chemically precise C-H activation using ion-pairs. Recent report by Phipps and co-workers of the ion-pair-directed regioselective Iridium-catalyzed borylation opens a new direction toward harnessing noncovalent interactions for C-H activation. In this article, the mechanism and specific role of ion-pairing are investigated using density functional theory (DFT). Computational studies reveal that meta C-H activation is kinetically more favorable than the para analogue due to stronger electrostatic interactions between the ion-pairs in closer proximity [d(NMe3+···SO3-)TSP1m = 3.93 Å versus d(NMe3+···SO3-)TSP1p = 4.30 Å]. The electrostatic interactions overwhelm the Pauli repulsion and distortion interactions incurred in bringing the oppositely charged ions in close contact for the rate-limiting meta transition state (TSP1m). Multiple linear regression shows that the free energies of activation correlate well with descriptors like the charge densities on the meta carbon and Ir atom along with that on the cation and anion with R2 = 0.74. Tuned range-separated DFT calculations demonstrate accurately the localization of charge separation in the reactant complex and transition state for the meta selectivity.

18.
Inorg Chem ; 61(24): 9055-9062, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35668390

RESUMO

Iron carbonyls are known to form 18-electron complexes like Fe(CO)5, Fe2(CO)9, and Fe3(CO)12 having terminal or bridged Fe-CO bonding. Based on genetic algorithm-assisted density functional theory (DFT) calculations, it is predicted that at pressures above 2 GPa, iron tetracarbonyl, Fe(CO)4, attains a square-planar geometry with a 16-electron count. Compression overcomes the [Ar]4s23d6 (S = 2) → [Ar]4s03d8 (S = 0) excitation energy to stabilize a closed-shell Fe(CO)4 with a d8-configuration. Strong σ(4CO) → Fe (dx2-y2) bonding along with Fe(dxz, dyz) and Fe(dxy) → π (CO)4* back-bonding assists the formation of square-planar Fe(CO)4 under pressure. Compression progressively flattens and destabilizes the ambient pressure C2v structure of Fe(CO)4, and beyond 2 GPa, it undergoes a sharp C2v → D4h transition with ΔVunit-cell = 2.1% and trans-θ(OC-Fe-CO) = 180°. Realizing a square-planar geometry in a four-coordinated Fe-carbonyl complex shows the rich prospects of the new chemistry under pressure.

19.
Phys Chem Chem Phys ; 24(28): 17050-17058, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796582

RESUMO

Developing a cost-effective and environmentally benign substitute for the energy-intensive Haber-Bosch process for the production of ammonia is a global challenge. The electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions through the six proton-electron process has attracted significant interest. Herein, a series of transition-metal (TM) based single atom catalysts (SAC) embedded on carbon nitride (C6N6) have been chosen to explore the NRR activity. The promising metals have been primarily screened through density functional theory (DFT) by calculating their adsorption energies on C6N6 - energies for dinitrogen binding and the barriers at the rate determining step. Based on these criteria, amongst the 18 metal centers, Ta based C6N6 emerges as a good candidate for the reduction of nitrogen to NH3. On the other hand, for the Machine Learning (ML) regression models, the covalent radius and the d-band center of the TM have been identified as the most correlated descriptors for predicting the adsorption energy of nitrogen on the active metal center. Besides, probabilistic modeling using the soft voting technique in the classification model allows us to predict the most efficient single atom catalyst. Despite the realistic bottleneck of having only a limited number of TMs to choose from, this technique effectively predicts the best catalyst from a modest dataset. With the highest probabilistic score, Ta based C6N6 dominates over the other catalysts in a good agreement with DFT findings. This letter manifests the effectiveness of the soft voting technique in an ensemble-based classification model.

20.
Angew Chem Int Ed Engl ; 61(25): e202203817, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35353441

RESUMO

This communication reveals co-assembly of an electron-deficient naphthalene-diimide (NDI)-appended polyurethane (P1) and electron-rich pyrene (Py), forming an organogel with prominent room-temperature ferroelectricity. In a non-polar medium, intra-chain hydrogen-bonding among the urethane groups of P1 produces a folded structure with an array of the NDIs in the periphery, which intercalate Py by charge-transfer (CT)-interaction. Such CT-complexation enables slow crystallization of the peripheral hydrocarbons, causing gelation with nanotubular morphology, in which the wall consists of the alternating NDI-Py stack. Such D-A assembly exhibits ferroelectricity (saturation polarization Ps ≈0.8 µC cm-2 and coercive field Ec ≈8 kV cm-1 at 500 V and 10 Hz frequency) with Curie temperature (Tc ) of ≈350 K, which can be related to the disassembly of the CT-complex. In the absence of Py, P1 forms spherical aggregates, showing dielectric behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA