Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7865): 125-129, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108683

RESUMO

In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.


Assuntos
Pareamento de Bases/genética , Genoma/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , alfa-Globinas/genética , Coesinas
2.
Genes Dev ; 31(16): 1704-1713, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916711

RESUMO

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled ß-globin locus. Specifically, new fetal stage-specific contacts were uncovered between a region separating the fetal (γ) and adult (δ and ß) globin genes (encompassing the HBBP1 and BGLT3 noncoding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells, the HBBP1-BGLT3 region contacts the embryonic ε-globin gene, physically separating the fetal globin genes from the enhancer (locus control region [LCR]). Deletion of the HBBP1 region in adult cells alters contact landscapes in ways more closely resembling those of fetal cells, including increased LCR-γ-globin contacts. These changes are accompanied by strong increases in γ-globin transcription. Notably, the effects of HBBP1 removal on chromatin architecture and gene expression closely mimic those of deleting the fetal globin repressor BCL11A, implicating BCL11A in the function of the HBBP1 region. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements.


Assuntos
Cromatina/química , Eritroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Elementos Reguladores de Transcrição , Globinas beta/genética , Adulto , Proteínas de Transporte/genética , Feto , Inativação Gênica , Humanos , Região de Controle de Locus Gênico , Proteínas Nucleares/genética , Pseudogenes , Proteínas Repressoras , Transcriptoma , gama-Globinas/genética
3.
Mol Cell ; 62(1): 104-10, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27041223

RESUMO

Long non-coding (lnc) RNAs can regulate gene expression and protein functions. However, the proportion of lncRNAs with biological activities among the thousands expressed in mammalian cells is controversial. We studied Lockd (lncRNA downstream of Cdkn1b), a 434-nt polyadenylated lncRNA originating 4 kb 3' to the Cdkn1b gene. Deletion of the 25-kb Lockd locus reduced Cdkn1b transcription by approximately 70% in an erythroid cell line. In contrast, homozygous insertion of a polyadenylation cassette 80 bp downstream of the Lockd transcription start site reduced the entire lncRNA transcript level by >90% with no effect on Cdkn1b transcription. The Lockd promoter contains a DNase-hypersensitive site, binds numerous transcription factors, and physically associates with the Cdkn1b promoter in chromosomal conformation capture studies. Therefore, the Lockd gene positively regulates Cdkn1b transcription through an enhancer-like cis element, whereas the lncRNA itself is dispensable, which may be the case for other lncRNAs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Elementos Facilitadores Genéticos , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Poli A/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
4.
Nat Methods ; 14(2): 125-134, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139673

RESUMO

Chromosome conformation capture (3C) methods are central to understanding the link between nuclear structure and function, and the physical interactions between distal regulatory elements and promoters. However, no one method is appropriate to address all biological questions, as each variant differs markedly in resolution, reproducibility, throughput and biases. A thorough appreciation of the strengths and weaknesses of each technique is critical when choosing the correct method for a specific application or for gauging how best to interpret different sources of data. In addition, the analysis method must be carefully considered, as this choice can profoundly affect the output. In this Review, we describe and compare the different available 3C-based approaches, with a focus on the analysis of mammalian genomes.


Assuntos
Cromossomos , Técnicas Genéticas , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos/química , Cromossomos/genética , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hibridização in Situ Fluorescente , Células K562 , Camundongos , Reação em Cadeia da Polimerase/métodos , Fatores de Transcrição SOXB1/genética , alfa-Globinas/genética
5.
Nat Methods ; 13(1): 74-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595209

RESUMO

Methods for analyzing chromosome conformation in mammalian cells are either low resolution or low throughput and are technically challenging. In next-generation (NG) Capture-C, we have redesigned the Capture-C method to achieve unprecedented levels of sensitivity and reproducibility. NG Capture-C can be used to analyze many genetic loci and samples simultaneously. High-resolution data can be produced with as few as 100,000 cells, and single-nucleotide polymorphisms can be used to generate allele-specific tracks. The method is straightforward to perform and should greatly facilitate the investigation of many questions related to gene regulation as well as the functional dissection of traits examined in genome-wide association studies.


Assuntos
Cromossomos Humanos , Humanos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes
6.
Nucleic Acids Res ; 45(22): e184, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29186505

RESUMO

Chromosome conformation capture (3C) techniques are crucial to understanding tissue-specific regulation of gene expression, but current methods generally require large numbers of cells. This hampers the investigation of chromatin architecture in rare cell populations. We present a new low-input Capture-C approach that can generate high-quality 3C interaction profiles from 10 000-20 000 cells, depending on the resolution used for analysis. We also present a PCR-free, sequencing-free 3C technique based on NanoString technology called C-String. By comparing C-String and Capture-C interaction profiles we show that the latter are not skewed by PCR amplification. Furthermore, we demonstrate that chromatin interactions detected by Capture-C do not depend on the degree of cross-linking by performing experiments with varying formaldehyde concentrations.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Técnicas Genéticas , Nanotecnologia/métodos , Animais , Contagem de Células , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , Feminino , Formaldeído/química , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Conformação Molecular
9.
Am J Respir Crit Care Med ; 190(12): 1342-54, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25419614

RESUMO

Organophosphorus (OP) compound poisoning is a major global public health problem. Acute OP insecticide self-poisoning kills over 200,000 people every year, the majority from self-harm in rural Asia. Highly toxic OP nerve agents (e.g., sarin) are a significant current terrorist threat, as shown by attacks in Damascus during 2013. These anticholinesterase compounds are classically considered to cause an acute cholinergic syndrome with decreased consciousness, respiratory failure, and, in the case of insecticides, a delayed intermediate syndrome that requires prolonged ventilation. Acute respiratory failure, by central and peripheral mechanisms, is the primary cause of death in most cases. However, preclinical and clinical research over the last two decades has indicated a more complex picture of respiratory complications after OP insecticide poisoning, including onset of delayed neuromuscular junction dysfunction during the cholinergic syndrome, aspiration causing pneumonia and acute respiratory distress syndrome, and the involvement of solvents in OP toxicity. The treatment of OP poisoning has not changed over the last 50 years. However, a better understanding of the multiple respiratory complications of OP poisoning offers additional therapeutic opportunities.


Assuntos
Substâncias para a Guerra Química/intoxicação , Inseticidas/intoxicação , Intoxicação por Organofosfatos/terapia , Cuidados Críticos/métodos , Humanos , Pneumologia/métodos
10.
Cytotherapy ; 16(11): 1453-1466, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24856895

RESUMO

Although natural killer (NK) cells can be readily generated for adoptive therapy with current techniques, their optimal application to treat malignant diseases requires an appreciation of the dynamic balance between signals that either synergize with or antagonize each other. Individuals display wide differences in NK function that determine their therapeutic efficacy. The ability of NK cells to kill target cells or produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. The selection of NK cells with a predominant activating profile is critical for delivering successful anti-tumor activity. This can be achieved through selection of killer immunoglobulin-like receptor-mismatched NK donors and by use of blocking molecules against inhibitory pathways. Optimum NK cytotoxicity may require licensing or priming with tumor cells. Recent discoveries in the molecular and cellular biology of NK cells inform in the design of new strategies, including adjuvant therapies, to maximize the cytotoxic potential of NK cells for adoptive transfer to treat human malignancies.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais/transplante , Leucemia/imunologia , Receptores KIR/uso terapêutico , Transferência Adotiva/métodos , Efeito Enxerto vs Leucemia/imunologia , Humanos , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Leucemia/terapia , Receptores KIR/imunologia
12.
Nat Protoc ; 18(6): 1687-1711, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36991220

RESUMO

Micro Capture-C (MCC) is a chromatin conformation capture (3C) method for visualizing reproducible three-dimensional contacts of specified regions of the genome at base pair resolution. These methods are an established family of techniques that use proximity ligation to assay the topology of chromatin. MCC can generate data at substantially higher resolution than previous techniques through multiple refinements of the 3C method. Using a sequence agnostic nuclease, the maintenance of cellular integrity and full sequencing of the ligation junctions, MCC achieves subnucleosomal levels of resolution, which can be used to reveal transcription factor binding sites analogous to DNAse I footprinting. Gene dense regions, close-range enhancer-promoter contacts, individual enhancers within super-enhancers and multiple other types of loci or regulatory regions that were previously challenging to assay with conventional 3C techniques, are readily observed using MCC. MCC requires training in common molecular biology techniques and bioinformatics to perform the experiment and analyze the data. The protocol can be expected to be completed in a 3 week timeframe for experienced molecular biologists.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Genoma , Biologia Computacional/métodos , Sequências Reguladoras de Ácido Nucleico
13.
Nat Commun ; 14(1): 2238, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076455

RESUMO

Haemoglobin E (HbE) ß-thalassaemia causes approximately 50% of all severe thalassaemia worldwide; equating to around 30,000 births per year. HbE ß-thalassaemia is due to a point mutation in codon 26 of the human HBB gene on one allele (GAG; glutamatic acid → AAG; lysine, E26K), and any mutation causing severe ß-thalassaemia on the other. When inherited together in compound heterozygosity these mutations can cause a severe thalassaemic phenotype. However, if only one allele is mutated individuals are carriers for the respective mutation and have an asymptomatic phenotype (ß-thalassaemia trait). Here we describe a base editing strategy which corrects the HbE mutation either to wildtype (WT) or a normal variant haemoglobin (E26G) known as Hb Aubenas and thereby recreates the asymptomatic trait phenotype. We have achieved editing efficiencies in excess of 90% in primary human CD34 + cells. We demonstrate editing of long-term repopulating haematopoietic stem cells (LT-HSCs) using serial xenotransplantation in NSG mice. We have profiled the off-target effects using a combination of circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) and deep targeted capture and have developed machine-learning based methods to predict functional effects of candidate off-target mutations.


Assuntos
Hemoglobina E , Talassemia , Talassemia beta , Humanos , Animais , Camundongos , Talassemia beta/genética , Hemoglobina E/genética , Talassemia/genética , Mutação , Mutação Puntual
14.
Cell Stem Cell ; 30(5): 722-740.e11, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146586

RESUMO

Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.


Assuntos
Cromatina , Leucemia Mieloide Aguda , Humanos , Transposases/genética , Transposases/metabolismo , Genótipo , Genômica , Regulação da Expressão Gênica
15.
Nat Commun ; 14(1): 5208, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626123

RESUMO

Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.


Assuntos
Leucemia , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico , Leucemia/genética , Regiões Promotoras Genéticas/genética , Proteínas de Ciclo Celular , Proteínas de Fusão Oncogênica/genética , Proteína de Leucina Linfoide-Mieloide/genética
16.
Nat Commun ; 13(1): 2139, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440598

RESUMO

Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date (20 bp resolution) and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Coesinas
17.
Nat Protoc ; 17(2): 445-475, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35121852

RESUMO

Chromosome conformation capture (3C) methods measure the spatial proximity between DNA elements in the cell nucleus. Many methods have been developed to sample 3C material, including the Capture-C family of protocols. Capture-C methods use oligonucleotides to enrich for interactions of interest from sequencing-ready 3C libraries. This approach is modular and has been adapted and optimized to work for sampling of disperse DNA elements (NuTi Capture-C), including from low cell inputs (LI Capture-C), as well as to generate Hi-C like maps for specific regions of interest (Tiled-C) and to interrogate multiway interactions (Tri-C). We present the design, experimental protocol and analysis pipeline for NuTi Capture-C in addition to the variations for generation of LI Capture-C, Tiled-C and Tri-C data. The entire procedure can be performed in 3 weeks and requires standard molecular biology skills and equipment, access to a next-generation sequencing platform, and basic bioinformatic skills. Implemented with other sequencing technologies, these methods can be used to identify regulatory interactions and to compare the structural organization of the genome in different cell types and genetic models.


Assuntos
Cromossomos
18.
Nat Commun ; 12(1): 223, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431820

RESUMO

Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Transcrição Gênica , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicóis/farmacologia , Histonas/metabolismo , Humanos , Leucemia/genética , Leucemia/patologia , Modelos Genéticos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica/efeitos dos fármacos , Coesinas
19.
Nat Genet ; 53(11): 1606-1615, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34737427

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Assuntos
COVID-19/complicações , Cromossomos Humanos Par 3/genética , Transição Epitelial-Mesenquimal , Pulmão/virologia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/isolamento & purificação , Fatores de Transcrição/genética , COVID-19/transmissão , COVID-19/virologia , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fatores de Transcrição/metabolismo
20.
Nat Commun ; 12(1): 531, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483495

RESUMO

Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation.


Assuntos
Núcleo Celular/genética , Cromatina/genética , Células Eritroides/metabolismo , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Células Cultivadas , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA