Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34234013

RESUMO

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Assuntos
Bacteriófagos/genética , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Programas de Imunização , Administração por Inalação , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Dependovirus/genética , Armazenamento de Medicamentos , Feminino , Programas de Imunização/métodos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Estudo de Prova de Conceito , Temperatura
2.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31484749

RESUMO

Phase-separated biomolecular condensates of proteins and nucleic acids form functional membrane-less organelles (e.g., stress granules and P-bodies) in the mammalian cell cytoplasm and nucleus. In contrast to the long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA) associated with the endoplasmic reticulum (ER) and Golgi apparatus, we report that MxA formed membraneless metastable (shape-changing) condensates in the cytoplasm. In our studies, we used the same cell lines and methods as those used by previous investigators but concluded that wild-type MxA formed variably sized spherical or irregular bodies, filaments, and even a reticulum distinct from that of ER/Golgi membranes. Moreover, in Huh7 cells, MxA structures associated with a novel cytoplasmic reticular meshwork of intermediate filaments. In live-cell assays, 1,6-hexanediol treatment led to rapid disassembly of green fluorescent protein (GFP)-MxA structures; FRAP revealed a relative stiffness with a mobile fraction of 0.24 ± 0.02 within condensates, consistent with a higher-order MxA network structure. Remarkably, in intact cells, GFP-MxA condensates reversibly disassembled/reassembled within minutes of sequential decrease/increase, respectively, in tonicity of extracellular medium, even in low-salt buffers adjusted only with sucrose. Condensates formed from IFN-α-induced endogenous MxA also displayed tonicity-driven disassembly/reassembly. In vesicular stomatitis virus (VSV)-infected Huh7 cells, the nucleocapsid (N) protein, which participates in forming phase-separated viral structures, associated with spherical GFP-MxA condensates in cells showing an antiviral effect. These observations prompt comparisons with the extensive literature on interactions between viruses and stress granules/P-bodies. Overall, the new data correct a long-standing misinterpretation in the MxA literature and provide evidence for membraneless MxA biomolecular condensates in the uninfected cell cytoplasm.IMPORTANCE There is a long-standing belief that interferon (IFN)-inducible human myxovirus resistance protein A (MxA), which displays antiviral activity against several RNA and DNA viruses, associates with the endoplasmic reticulum (ER) and Golgi apparatus. We provide data to correct this misinterpretation and further report that MxA forms membraneless metastable (shape-changing) condensates in the cytoplasm consisting of variably sized spherical or irregular bodies, filaments, and even a reticulum. Remarkably, MxA condensates showed the unique property of rapid (within 1 to 3 min) reversible disassembly and reassembly in intact cells exposed sequentially to hypotonic and isotonic conditions. Moreover, GFP-MxA condensates included the VSV nucleocapsid (N) protein, a protein previously shown to form liquid-like condensates. Since intracellular edema and ionic changes are hallmarks of cytopathic effects of a viral infection, the tonicity-driven regulation of MxA condensates may reflect a mechanism for modulation of MxA function during viral infection.


Assuntos
Citoplasma/virologia , Proteínas de Resistência a Myxovirus/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral/fisiologia , Citoplasma/metabolismo , Humanos , Orthomyxoviridae/metabolismo , Proteínas/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Viroses/metabolismo , Vírus/metabolismo
3.
Contemp Oncol (Pozn) ; 22(2): 86-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150884

RESUMO

AIM OF THE STUDY: Interferon (IFN)-α is now established as a treatment modality in various human cancers. The IFN-α-inducible human "myxovirus resistance protein A" (MxA) is a cytoplasmic dynamin-family large GTPase primarily characterized for its broad-spectrum antiviral activity and, more recently, for its anti-tumor and anti-metastasis effects. We characterized the association of IFN-α-induced MxA with cytoplasmic structures in human Huh7 cancer cells and in primary endothelial cells. MATERIAL AND METHODS: We re-evaluated the long-standing inference that MxA associated with the smooth ER using double-label immunofluorescence techniques and the ER structural protein RTN4 as a marker for smooth ER in IFN-α-treated cells. We also evaluated the relationship of exogenously expressed HA-MxA and GFP-MxA with mitochondria, and characterized cytoplasmic GFP-MxA structures using correlated light and electron microscopy (CLEM). RESULTS AND CONCLUSIONS: We discovered that IFN-α-induced endogenous MxA associated with variably-sized endosome-like and reticular cytoplasmic structures which were distinct from the ER. Thin-section EM studies of GFP-MxA expressing Huh7 cells showed that GFP-MxA formed variably-sized clusters of vesiculotubular elements to form endosome-like "MxA bodies". Many of these clusters stretched out alongside cytoskeletal elements to give the appearance of a cytoplasmic "MxA reticulum". This MxA meshwork was distinct from but adjacent to mitochondria. GFP-MxA expressing Huh7 cells showed reduced MitoTracker uptake and swollen mitochondria by thin-section EM. The new data identify cytoplasmic MxA structures as novel organelles, and suggest cross-talk between MxA structures and mitochondria that might account for the increased anti-tumoral efficacy of IFN-α combined with ligands that activate other pattern-sensing receptor pathways.

4.
bioRxiv ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758865

RESUMO

Development of effective vaccines against Coronavirus Disease 2019 (COVID-19) is a global imperative. Rapid immunization of the world human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and many different vaccine approaches are being pursued to meet this task. Engineered filamentous bacteriophage (phage) have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the design, development, and initial evaluation of targeted phage-based vaccination approaches against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by using dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. Towards a unique phage- and AAVP-based dual-display candidate approach, we first performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein for display on the recombinant major capsid coat protein pVIII. Targeted phage particles carrying one of these epitopes induced a strong and specific humoral response. In an initial experimental approach, when these targeted phage particles were further genetically engineered to simultaneously display a ligand peptide (CAKSMGDIVC) on the minor capsid protein pIII, which enables receptor-mediated transport of phage particles from the lung epithelium into the systemic circulation (termed "dual-display"), they enhanced a systemic and specific spike (S) protein-specific antibody response upon aerosolization into the lungs of mice. In a second line of investigation, we engineered targeted AAVP particles to deliver the entire S protein gene under the control of a constitutive cytomegalovirus (CMV) promoter, which induced tissue-specific transgene expression stimulating a systemic S protein-specific antibody response. As proof-of-concept preclinical experiments, we show that targeted phage- and AAVP-based particles serve as robust yet versatile enabling platforms for ligand-directed immunization and promptly yield COVID-19 vaccine prototypes for further translational development. SIGNIFICANCE: The ongoing COVID-19 global pandemic has accounted for over 2.5 million deaths and an unprecedented impact on the health of mankind worldwide. Over the past several months, while a few COVID-19 vaccines have received Emergency Use Authorization and are currently being administered to the entire human population, the demand for prompt global immunization has created enormous logistical challenges--including but not limited to supply, access, and distribution--that justify and reinforce the research for additional strategic alternatives. Phage are viruses that only infect bacteria and have been safely administered to humans as antibiotics for decades. As experimental proof-of-concept, we demonstrated that aerosol pulmonary vaccination with lung-targeted phage particles that display short epitopes of the S protein on the capsid as well as preclinical vaccination with targeted AAVP particles carrying the S protein gene elicit a systemic and specific immune response against SARS-CoV-2 in immunocompetent mice. Given that targeted phage- and AAVP-based viral particles are sturdy yet simple to genetically engineer, cost-effective for rapid large-scale production in clinical grade, and relatively stable at room temperature, such unique attributes might perhaps become additional tools towards COVID-19 vaccine design and development for immediate and future unmet needs.

5.
Adv Cancer Res ; 147: 303-317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32593404

RESUMO

Receptor tyrosine kinases (RTKs) are integral membrane sensors that govern cell differentiation, proliferation and mobility, and enable rapid communication between cells and their environment. Of the 20 RTK subfamilies currently known, Eph receptors are the largest group. Together with their corresponding ephrin ligands, Eph receptors regulate a diverse array of physiologic processes including axonal guidance, bone remodeling, and immune cell development and trafficking. Deregulation of Eph signaling pathways is linked to cancer and other proliferative diseases and, because RTKs play critical roles in cancer development, the specific targeting of these molecules in malignancies provides a promising treatment approach. Monoclonal antibodies targeting RTKs represent a potentially attractive modality for pharmaceutical development due to their relatively high target specificity and low off-target binding rates. Therefore, new technologies to generate antibodies able to target RTKs in their native in vivo context are likely to facilitate pre-clinical and clinical development of antibody-based therapies. Our group has recently reported a platform discovery methodology termed Selection of Phage-displayed Accessible Recombinant Targeted Antibodies (SPARTA). SPARTA is a novel and robust stepwise method, which combines the attributes of in vitro screenings of a naïve human recombinant antibody library against known tumor targets with those features of in vivo selections based on tumor-homing capabilities of a pre-enriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human monoclonal antibodies amenable to rapid translation into medical applications.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Receptores da Família Eph/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Receptores da Família Eph/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA