Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641346

RESUMO

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are critical for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics which relies on synthetic stable isotope-labeled surrogate peptides as calibrators, is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA doesn't consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage (SC-TPA), which was applied to quantify 54 DMETs for characterization of i) differential tissue DMET abundance in the human liver, kidney, and intestine, and ii) interindividual variability of DMET proteins in individual intestinal samples (n=13). UGT2B7, MGST1, MGST2, MGST3, CES2, and MRP2 were expressed in all three tissues, whereas, as expected CYP3A4, CYP3A5, CYP2C9, CYP4F2, UGT1A1, UGT2B17, CES1, FMO5, MRP3, and P-gp were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation (IVIVE) of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic (PBPK) prediction of systemic and tissue concentration of drugs. Significance Statement We quantified the abundance and compositions of drug-metabolizing enzymes and transporters (DMETs) in pooled human liver, intestine, and kidney microsomes using an optimized sequence coverage-informed total protein approach. The quantification of DMETs revealed quantitative differences in their levels in the liver, intestine, and kidney. Further, the analysis of individual intestine samples confirmed high variability in the levels of CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.

2.
J Biol Chem ; 298(4): 101761, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202651

RESUMO

Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3'-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3'H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide-binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteínas de Plantas , Sorghum , Animais , Lignina/metabolismo , Mamíferos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorghum/química , Sorghum/enzimologia , Sorghum/genética
3.
Plant Physiol ; 183(3): 957-973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332088

RESUMO

Cinnamate 4-hydroxylase (C4H; CYP73A) is a cytochrome P450 monooxygenase associated externally with the endoplasmic reticulum of plant cells. The enzyme uses NADPH-cytochrome P450 reductase as a donor of electrons and hydroxylates cinnamic acid to form 4-coumaric acid in phenylpropanoid metabolism. In order to better understand the structure and function of this unique class of plant P450 enzymes, we have characterized the enzyme C4H1 from lignifying tissues of sorghum (Sorghum bicolor), encoded by Sobic.002G126600 Here we report the 1.7 Å resolution crystal structure of CYP73A33. The obtained structural information, along with the results of the steady-state kinetic analysis and the absorption spectroscopy titration, displays a high degree of similarity of the structural and functional features of C4H to those of other P450 proteins. Our data also suggest the presence of a putative allosteric substrate-binding site in a hydrophobic pocket on the enzyme surface. In addition, comparing the newly resolved structure with those of well-investigated cytochromes P450 from mammals and bacteria enabled us to identify those residues of critical functional importance and revealed a unique sequence signature that is potentially responsible for substrate specificity and catalytic selectivity of C4H.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Sorghum/genética , Sorghum/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Genes de Plantas , Estrutura Molecular
4.
Arch Biochem Biophys ; 708: 108937, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34058150

RESUMO

We investigated the correspondence between drug metabolism routes and the composition of the P450 ensemble in human liver microsomes (HLM). As a probe, we used Coumarin 152 (C152), a fluorogenic substrate metabolized by multiple P450 species. Studying the substrate-saturation profiles (SSP) in seven pooled HLM preparations, we sought to correlate them with the P450 pool's composition characterized by targeted proteomics. This analysis, complemented with the assays with specific inhibitors of CYP3A4 and CYP2C19, the primary C152 metabolizers, demonstrated a significant contrast between different HLM samples. To unveil the source of these differences, we implemented Principal Component Analysis (PCA) of the SSP series obtained with HLM samples with a known composition of the P450 pool. Our analysis revealed that the parameters of C152 metabolism are primarily determined by the content of CYP2A6, CYP2B6, CYP2C8, CYP2E1, and CYP3A5 of those only CYP2B6 and CYP3A5 can metabolize C152. To validate this finding, we studied the effect of enriching HLM with CYP2A6, CYP2E1, and CYP3A5. The incorporation of CYP3A5 into HLM decreases the rate of C152 metabolism while increasing the role of CYP2B6 in its turnover. In contrast, incorporation of CYP2A6 and CYP2E1 reroutes the C152 demethylation towards some P450 enzyme with a moderate affinity to the substrate, most likely CYP3A4. Our results reveal a sharp non-additivity of the individual P450 properties and suggest a pivotal role of P450-P450 interactions in determining drug metabolism routes. This study demonstrates the high potential of our new PCA-based approach in unveiling functional interrelationships between different P450 species.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Análise de Componente Principal , Proteômica , Animais , Cinética , Ligação Proteica
5.
Arch Biochem Biophys ; 698: 108677, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197431

RESUMO

We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Etanol/toxicidade , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Sequência de Aminoácidos , Amitriptilina/metabolismo , Benzoflavonas/farmacologia , Citocromo P-450 CYP2E1/análise , Citocromo P-450 CYP3A/análise , Ativadores de Enzimas/farmacologia , Feminino , Humanos , Ivermectina/metabolismo , Masculino , Midazolam/metabolismo , Nitrofenóis/metabolismo , Quinolinas/metabolismo
6.
Xenobiotica ; 50(12): 1393-1405, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32662751

RESUMO

We closely characterized 7-Dimethylamino-4-trifluromethylcoumarin (Coumarin 152, C152), a substrate metabolized by multiple P450 species, to establish a new fluorogenic probe for the studies of functional integration in the cytochrome P450 ensemble. Scanning fluorescence spectroscopy and LC/MS-MS were used to characterize the products of N-demethylation of C152 and optimize their fluorometric detection. The metabolism of C152 by the individual P450 species was characterized using the microsomes containing cDNA-expressed enzymes. C152 metabolism in human liver microsomes (HLM) was studied in a preparation with quantified content of eleven P450 species. C152 is metabolized by CYP2B6, CYP3A4, CYP3A5, CYP2C19, CYP1A2, CYP2C9, and CYP2C8 listed in the order of decreasing turnover. The affinities exhibited by CYP3A5, CYP2C9, and CYP2C8 were lower than those characteristic to the other enzymes. The presumption of additivity suggests the participation of CYP3A4, CYP2B6, and CYP2C19 to be 84, 8, and 0.2%, respectively. Contrary to this prediction, inhibitory analysis identified CYP2C19 as the principal C152-metabolizing enzyme. We thoroughly characterize C152 for the studies of drug metabolism in HLM and demonstrate the limitations of the proportional projection approach by providing an example, where the involvement of individual P450 species cannot be predicted from their content.


Assuntos
Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Taxa de Depuração Metabólica/fisiologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos
7.
Biochem J ; 476(23): 3661-3685, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750875

RESUMO

In this study, we investigate the ability of ethanol-inducible CYP2E1 to interact with other cytochrome P450 species and affect the metabolism of their substrates. As a model system, we used CYP2E1-enriched human liver microsomes (HLM) obtained by the incorporation of purified CYP2E1. Using a technique based on homo-FRET in oligomers of CYP2E1 labeled with BODIPY 577/618 maleimide we demonstrated that the interactions of CYP2E1 with HLM result in the formation of its mixed oligomers with other P450 species present in the microsomal membrane. Incorporation of CYP2E1 results in a multifold increase in the rate of metabolism of CYP2E1-specific substrates p-Nitrophenol and Chlorzaxozone. The rate of their oxidation remains proportional to the amount of incorporated CYP2E1 up to the content of 0.3-0.4 nmol/mg protein (or ∼50% CYP2E1 in the P450 pool). The incorporated CYP2E1 becomes a fully functional member of the P450 ensemble and do not exhibit any detectable functional differences with the endogenous CYP2E1. Enrichment of HLM with CYP2E1 results in pronounced changes in the metabolism of 7-ethoxy-4-cyanocoumarin (CEC), the substrate of CYP2C19 and CYP1A2 suggesting an increase in the involvement of the latter in its metabolism. This effect goes together with an augmentation of the rate of dealkylation of CYP1A2-specific substrate 7-ethoxyresorufin. Furthermore, probing the interactions of CYP2E1 with model microsomes containing individual P450 enzymes we found that CYP2E1 efficiently interacts with CYP1A2, but lacks any ability to form complexes with CYP2C19. This finding goes inline with CYP2E1-induced redirection of the main route of CEC metabolism from CYP2C19 to CYP1A2.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Microssomos Hepáticos/metabolismo , Membrana Celular/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Remoção de Radical Alquila , Escherichia coli/metabolismo , Feminino , Humanos , Fígado/citologia , Masculino , Espectrometria de Massas , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxazinas/metabolismo , Oxirredução , Espectrometria de Fluorescência , Especificidade por Substrato , Doadores de Tecidos
8.
Biochem J ; 474(20): 3523-3542, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28904078

RESUMO

Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.


Assuntos
Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Animais , Bovinos , Humanos , Microssomos Hepáticos/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos
9.
Biophys J ; 110(7): 1485-1498, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074675

RESUMO

We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.


Assuntos
Citocromo P-450 CYP3A/química , Espectroscopia de Ressonância de Spin Eletrônica , Pressão , Citocromo P-450 CYP3A/genética , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
10.
J Biol Chem ; 290(6): 3850-64, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533469

RESUMO

The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219-230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/enzimologia , Multimerização Proteica , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/química , Humanos , Dados de Sequência Molecular , Ligação Proteica
11.
Biochemistry ; 54(3): 711-21, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25545162

RESUMO

Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V.


Assuntos
Carbamazepina/metabolismo , Domínio Catalítico , Citocromo P-450 CYP3A/metabolismo , Compostos de Epóxi/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/metabolismo , Carbamazepina/química , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/isolamento & purificação , Heme/metabolismo , Humanos , Proteínas Mutantes/química , Mutação , Especificidade por Substrato
12.
Arch Biochem Biophys ; 545: 100-7, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24445070

RESUMO

Recent X-ray crystal structures of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 in complex with amlodipine showed two bound ligand molecules, one in the active site and one in the substrate access channel. Based on the X-ray crystal structures, we investigated the interactions of P450 2B4 and 2B6 with amlodipine using absorbance spectroscopy, and determined the steady-state kinetics of 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin oxidation by some access channel mutants to evaluate the functional role of these residues in substrate turnover. The results of absorbance titrations are consistent with a simple mechanism with two parallel binding events that result in the formation of the enzyme complex with two molecules of amlodipine. Using this model we were able to resolve two separate ligand-binding events, which are characterized by two distinct KD values in each enzyme. The access channel mutants R73K in P450 2B6 and R73K, V216W, L219W, and F220W in P450 2B4 showed a significant decrease in kcat/KM with the both substrates. Overall, the results suggest that P450 2B4 and 2B6 form an enzyme complex with two molecules of amlodipine in solution, and R73, V216, L219 and F220 in P450 2B4 may play an important role in substrate metabolism.


Assuntos
Anlodipino/metabolismo , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Sítios de Ligação , Domínio Catalítico , Cumarínicos/metabolismo , Cristalografia por Raios X , Citocromo P-450 CYP2B6 , Família 2 do Citocromo P450 , Humanos , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Coelhos
13.
Biochem J ; 453(2): 219-30, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23651100

RESUMO

We investigated the relationship between oligomerization of CYP3A4 (cytochrome P450 3A4) and its response to ANF (α-naphthoflavone), a prototypical heterotropic activator. The addition of ANF resulted in over a 2-fold increase in the rate of CYP3A4-dependent debenzylation of 7-BFC [7-benzyloxy-4-(trifluoromethyl)coumarin] in HLM (human liver microsomes), but failed to produce activation in BD Supersomes or Baculosomes containing recombinant CYP3A4 and NADPH-CPR (cytochrome P450 reductase). However, incorporation of purified CYP3A4 into Supersomes containing only recombinant CPR reproduced the behaviour observed with HLM. The activation in this system was dependent on the surface density of the enzyme. Although no activation was detectable at an L/P (lipid/P450) ratio ≥750, it reached 225% at an L/P ratio of 140. To explore the relationship between this effect and CYP3A4 oligomerization, we probed P450-P450 interactions with a new technique that employs LRET (luminescence resonance energy transfer). The amplitude of LRET in mixed oligomers of the haem protein labelled with donor and acceptor fluorophores exhibited a sigmoidal dependence on the surface density of CYP3A4 in Supersomes™. The addition of ANF eliminated this sigmoidal character and increased the degree of oligomerization at low enzyme concentrations. Therefore the mechanisms of CYP3A4 allostery with ANF involve effector-dependent modulation of P450-P450 interactions.


Assuntos
Benzoflavonas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Regulação Alostérica , Biopolímeros , Humanos , Microssomos , Ligação Proteica
14.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798409

RESUMO

We examined the effect of alcohol consumption and smoking on the abundance of drug-metabolizing enzymes and transporters (DMET) in human liver microsomes (HLM) isolated from liver tissues of 94 donors. Global proteomics analysis was performed and DMET protein levels were analyzed in relation to alcohol consumption levels, smoking history, and sex using non-parametric tests (p-value ≤ 0.05; cutoff of 1.25-fold change, FC). The examination of the alcohol-induced changes was further enforced by correlational analysis, where we used arbitrary alcohol consumption grade (ACG) scaling from 0 to 4 to establish a set of protein markers. We elaborated a provisional index of alcohol exposure (PIAE) based on a combination of relative abundances of four proteins (ER chaperone HSPA5, protein disulfide isomerases PDIA3 and P4HB, and cocaine esterase CES2) best correlating with ACG. The PIAE index was then used to find its correlations with the abundances of DMET proteins. Our results demonstrate considerable alcohol-induced changes in composition of the pool of cytochrome P450 enzymes in HLM. We observed significantly increased abundances of CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome P450 reductase. In contrast, CYP1A2, CYP2C8, CYP2C9, CYP4A11, and cytochrome b5 protein levels were downregulated. Significant alteration in abundances of UDP-glucuronosyltransferase (UGT) were also detected, comprising of elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 levels. Important alcohol-induced changes were also observed in the expression of non-CYP and non-UGT DMET. Additionally, tobacco smoke was associated with elevated CYP1A2, UGT1A6, UGT2A1, and UGT2B4 and decreased FMO3, FMO4, and FMO5 levels.

15.
J Biol Chem ; 287(9): 6797-809, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22194603

RESUMO

The mechanisms of ligand binding and allostery in the major human drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) were explored with fluorescence resonance energy transfer (FRET) using a laser dye, fluorol-7GA (F7GA), as a model substrate. Incorporation into the enzyme of a thiol-reactive FRET probe, pyrene iodoacetamide, allowed us to monitor the binding by FRET from the pyrene donor to the F7GA acceptor. Cooperativity of the interactions detected by FRET indicates that the enzyme possesses at least two F7GA-binding sites that have different FRET efficiencies and are therefore widely separated. To probe spatial localization of these sites, we studied FRET in a series of mutants bearing pyrene iodoacetamide at different positions, and we measured the distances from each of the sites to the donor. Our results demonstrate the presence of a high affinity binding site at the enzyme periphery. Analysis of the set of measured distances complemented with molecular modeling and docking allowed us to pinpoint the most probable peripheral site. It is located in the vicinity of residues 217-220, similar to the position of the progesterone molecule bound at the distal surface of the CYP3A4 in a prior x-ray crystal structure. Peripheral binding of F7GA causes a substantial spin shift and serves as a prerequisite for the binding in the active site. This is the first indication of functionally important ligand binding outside of the active site in cytochromes P450. The findings strongly suggest that the mechanisms of CYP3A4 cooperativity involve a conformational transition triggered by an allosteric ligand.


Assuntos
Sítios de Ligação/fisiologia , Citocromo P-450 CYP3A/química , Transferência Ressonante de Energia de Fluorescência , Isoquinolinas/química , Modelos Químicos , Regulação Alostérica , Domínio Catalítico , Cisteína/genética , Citocromo P-450 CYP3A/genética , Humanos , Ligantes , Mutagênese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Titulometria
16.
Biotechnol Appl Biochem ; 60(1): 30-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586990

RESUMO

We have explored the adaptation of the cytochromes P450 (P450) of deep-sea bacteria to high hydrostatic pressures. Strict conservation of the protein fold and functional importance of protein-bound water make P450 a unique subject for the studies of high-pressure adaptation. Earlier, we expressed and purified a fatty-acid binding P450 from the deep-sea bacteria Photobacterium profundum SS9 (CYP261C1). Here, we report purification and initial characterization of its mesophilic ortholog from the shallow-water P. profundum 3TCK (CYP261C2), as well as another piezophilic enzyme, CYP261D1, from deep-sea Moritella sp. PE36. Comparison of the three enzymes revealed a striking peculiarity of the piezophilic enzymes. Both CYP261C1 and CYP261D1 possess an apparent pressure-induced conformational toggle actuated at the pressures commensurate with the physiological pressure of habitation of the host bacteria. Furthermore, in contrast to CYP261C2, the piezophilic CYP261 enzymes may be chromatographically separated into two fractions with different properties, and different thermodynamic parameters of spin equilibrium in particular. According to our concept, the changes in the energy landscape that evolved in pressure-tolerant enzymes must stabilize the less-hydrated, closed conformers, which may be transient in the catalytic mechanisms of nonpiezophilic enzymes. The studies of enzymes of piezophiles should help unravel the mechanisms that control water access during the catalytic cycle.


Assuntos
Organismos Aquáticos/enzimologia , Sistema Enzimático do Citocromo P-450/química , Moritella/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Conformação Proteica
17.
Biotechnol Appl Biochem ; 60(1): 41-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586991

RESUMO

We describe a novel technique for heme removal and replacement in the heme domain of P450BM-3 (BMP). The method was applied to obtain the aluminum-protoporphyrin IX (Al-PP) substituted derivative of BMP (Al-BMP). The overall yield of the purified Al-BMP was about 15% as related to the initial amount of the hemeprotein. Al-BMP possesses extensive fluorescence in the 550-650 nm region with excitation in the porphyrin absorbance bands. The protein was shown to bind substrates of P450BM-3 (palmitic, arachidonic, and cis-parinaric acids) with affinities similar to those of the native enzyme (3-6 µM). However, the substrate-induced changes in fluorescence of Al-PP reveal the existence of a second, low-affinity substrate-binding site, which cannot be detected by the spin shift in the native, heme-containing BMP. Using fluorescence resonance energy transfer, we have demonstrated that Al-BMP forms a complex with the flavoprotein domain of P450BM-3 labeled with 7-ethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin maleimide, revealing the affinity similar to that of native BMP (Kd = 5 µM at 0.06 M ionic strength). Therefore, aluminum-substituted BMP may serve as a valuable tool in studies on the mechanisms of interactions of P450s with their substrates and protein partners.


Assuntos
Alumínio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Corantes Fluorescentes/química , Heme/química , Heme/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Especificidade por Substrato
18.
Biology (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37626940

RESUMO

In a search for a reliable, inexpensive, and versatile technique for high-throughput kinetic assays of drug metabolism, we elected to rehire an old-school approach based on the determination of formaldehyde (FA) formed in cytochrome P450-dependent demethylation reactions. After evaluating several fluorometric techniques for FA detection, we chose the method based on the Hantzsch reaction with acetoacetanilide as the most sensitive, robust, and adaptable to high-throughput implementation. Here we provide a detailed protocol for using our new technique for automatized assays of cytochrome P450-dependent drug demethylations and discuss its applicability for high-throughput scanning of drug metabolism pathways in the human liver. To probe our method further, we applied it to re-evaluating the pathways of metabolism of ketamine, a dissociative anesthetic and potent antidepressant increasingly used in the treatment of alcohol withdrawal syndrome. Probing the kinetic parameters of ketamine demethylation by ten major cytochrome P450 (CYP) enzymes, we demonstrate that in addition to CYP2B6 and CYP3A enzymes, which were initially recognized as the primary metabolizers of ketamine, an important role is also played by CYP2C19 and CYP2D6. At the same time, the involvement of CYP2C9 suggested in the previous reports was deemed insignificant.

19.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453709

RESUMO

NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (ΔV0) of the opening transition. While the ΔV0 characteristic of the oxidized enzyme is as large as -88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to -34 and -18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions.

20.
Biomolecules ; 12(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35204686

RESUMO

Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.


Assuntos
Citocromo P-450 CYP2E1 , Hexosiltransferases , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Hexosiltransferases/metabolismo , Humanos , Espectrometria de Massas , Microssomos Hepáticos , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA