Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Toxicol Pathol ; 62(6): 607-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19781924

RESUMO

A number of drugs and drug candidates, including fenfluramine and ergot derivatives, are associated with valvulopathy in humans; however, these responses are poorly predicted from animal studies. In vitro and in vivo evidence suggests that these compounds exert their pathological effect through activation of serotonin 2B receptor (5HT2BR) signaling. However, the variable effect of fenfluramine and other 5HT2BR agonists in rodents has cast doubt on the relevance of animal findings to predicting human risk. Herein, a candidate compound, RO3013, induced subendocardial cell proliferation in the mitral and tricuspid valves in rats after only 3 days of daily dosing. Additionally, there was a treatment-related increase in immunostaining of the proliferation marker Ki67, and phosphorylated Smad3 in the heart indicative of TGFß signaling co-localized with 5HT2BR expression. To substantiate the hypothesis that RO3013-induced valvular proliferation is secondary to 5HT2BR activation, the compound was evaluated in vitro and found to bind to the human 5HT2BR with a K(i) of 3.8µM; however, it was virtually devoid of agonist activity in a functional assay in human cells. By contrast, RO3013 bound to the rat 5HT2BR with a K(i) of 1.2µM and activated the receptor with an EC50 of 0.5µM. This agonist potency estimate is in good agreement with the free plasma concentrations of RO3013 at which valvular proliferation was observed. These results suggest that the rat may be susceptible to 5HT2BR-mediated valvular proliferation similar to humans; yet, the significant differences between binding and functional activities can be a possible explanation for the observed species-selective receptor responses.


Assuntos
Doenças das Valvas Cardíacas/induzido quimicamente , Miocárdio/patologia , Receptor 5-HT2B de Serotonina/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Antígeno Ki-67/análise , Masculino , Ratos , Ratos Wistar , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/fisiologia
2.
Toxicol Lett ; 190(2): 193-201, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19643169

RESUMO

The glycol ether solvents 2-methoxyethanol (2-ME) and 2-ethoxyethanol (2-EE) produce testicular toxicity characterized by spermatocyte degeneration, while a similar glycol ether, 2-butoxyethanol (2-BE), has no testicular effects. The goal of the current study was to better understand the mechanism of glycol ether testicular toxicity through gene expression profiling and functional classification of differentially expressed genes. Male rats were administered 2-ME (150 and 50mg/kg/day), 2-EE (500 mg/kg/day), 2-BE (125 mg/kg/day), or vehicle for 3 days, and testes were collected for histopathological and gene expression analysis. Histopathological changes in the testes were observed only in animals given 150 mg/kg/day 2-ME, consisting of degeneration and necrosis of spermatocytes and reductions in spermatocyte numbers. Microarray analysis of testicular samples from these animals revealed a large number of differentially expressed genes from animals exposed to 2-EE or to 50mg/kg or 150 mg/kg 2-ME (>900 each at >1.5-fold changed), compared to 28 genes from 2-BE treated animals. Expression Analysis Systematic Explorer (EASE) analysis of these genes demonstrated statistical enrichment in genes in categories including protein transport, endocytosis, protein kinase activity, cell cycle, and meiosis. Quantitative PCR confirmation of select genes confirmed increased expression of the actin binding protein cortactin and the transcription factor Wilm's tumor 1 (Wt1) following 2-ME exposure. Increased localization of cortactin in abnormal spermatocytes was also observed by immunohistochemistry, consistent with a possible role for this protein in the mechanism of toxicity.


Assuntos
Cortactina/biossíntese , Etilenoglicóis/toxicidade , Espermatócitos/metabolismo , Teratogênicos/toxicidade , Testículo/metabolismo , Animais , Cortactina/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatócitos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Proteínas WT1/biossíntese , Proteínas WT1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA