Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(38): e202300569, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015870

RESUMO

Three hexacarbonyl diiron dithiolate complexes [Fe2 (CO)6 (µ-(SCH2 )2 X)] with different substituted bridgeheads (X=CH2 , CEt2 , CBn2 (Bn=CH2 C6 H5 )), have been studied under the same experimental conditions by cyclic voltammetry in dichloromethane [NBu4 ][PF6 ] 0.2 M. DFT calculations were performed to rationalize the mechanism of reduction of these compounds. The three complexes undergo a two-electron transfer whose the mechanism depends on the bulkiness of the dithiolate bridge, which involves a different timing of the structural changes (Fe-S bond cleavage, inversion of conformation and CO bridging) vs redox steps. The introduction of a bulky group in the dithiolate linker has obviously an effect on normally ordered (as for propanedithiolate (pdt)) or inverted (pdtEt2 , pdtBn2 ) reduction potentials. Et→Bn replacement is not theoretically predicted to alter the geometry and energy of the most stable mono-reduced and bi-reduced forms but such a replacement alters the kinetics of the electron transfer vs the structural changes.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Biomimética , Transporte de Elétrons , Oxirredução
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047341

RESUMO

Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.


Assuntos
Plásticos , Polissacarídeos , Plásticos/metabolismo , Simulação de Acoplamento Molecular , Oxirredução , Polissacarídeos/metabolismo , Lignina/metabolismo , Estresse Oxidativo , Biopolímeros/metabolismo
3.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630271

RESUMO

Flavodoxins are enzymes that contain the redox-active flavin mononucleotide (FMN) cofactor and play a crucial role in numerous biological processes, including energy conversion and electron transfer. Since the redox characteristics of flavodoxins are significantly impacted by the molecular environment of the FMN cofactor, the evaluation of the interplay between the redox properties of the flavin cofactor and its molecular surroundings in flavoproteins is a critical area of investigation for both fundamental research and technological advancements, as the electrochemical tuning of flavoproteins is necessary for optimal interaction with redox acceptor or donor molecules. In order to facilitate the rational design of biomolecular devices, it is imperative to have access to computational tools that can accurately predict the redox potential of both natural and artificial flavoproteins. In this study, we have investigated the feasibility of using non-equilibrium thermodynamic integration protocols to reliably predict the redox potential of flavodoxins. Using as a test set the wild-type flavodoxin from Clostridium Beijerinckii and eight experimentally characterized single-point mutants, we have computed their redox potential. Our results show that 75% (6 out of 8) of the calculated reaction free energies are within 1 kcal/mol of the experimental values, and none exceed an error of 2 kcal/mol, confirming that non-equilibrium thermodynamic integration is a trustworthy tool for the quantitative estimation of the redox potential of this biologically and technologically significant class of enzymes.


Assuntos
Clostridium beijerinckii , Flavodoxina , Termodinâmica , Flavoproteínas , Transporte de Elétrons
4.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334012

RESUMO

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Assuntos
Cobre , Metaloproteínas , Cobre/química , Catecóis/química , Metaloproteínas/química , Oxirredução
5.
Mol Ecol ; 31(13): 3672-3692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575901

RESUMO

Coronaviruses (CoVs) have complex genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ even among closely related viruses. Accessory proteins often play a role in the suppression of immune responses and may represent virulence factors. Despite their relevance for CoV phenotypic variability, information on accessory proteins is fragmentary. We applied a systematic approach based on homology detection to create a comprehensive catalogue of accessory proteins encoded by CoVs. Our analyses grouped accessory proteins into 379 orthogroups and 12 super-groups. No orthogroup was shared by the four CoV genera and very few were present in all or most viruses in the same genus, reflecting the dynamic evolution of CoV genomes. We observed differences in the distribution of accessory proteins in CoV genera. Alphacoronaviruses harboured the largest diversity of accessory open reading frames (ORFs), deltacoronaviruses the smallest. However, the average number of accessory proteins per genome was highest in betacoronaviruses. Analysis of the evolutionary history of some orthogroups indicated that the different CoV genera adopted similar evolutionary strategies. Thus, alphacoronaviruses and betacoronaviruses acquired phosphodiesterases and spike-like accessory proteins independently, whereas horizontal gene transfer from reoviruses endowed betacoronaviruses and deltacoronaviruses with fusion-associated small transmembrane (FAST) proteins. Finally, analysis of accessory ORFs in annotated CoV genomes indicated ambiguity in their naming. This complicates cross-communication among researchers and hinders automated searches of large data sets (e.g., PubMed, GenBank). We suggest that orthogroup membership is used together with a naming system to provide information on protein function.


Assuntos
Coronavirus , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/genética , Evolução Molecular , Genoma Viral/genética , Fases de Leitura Aberta/genética
6.
Immunity ; 38(6): 1129-41, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23707475

RESUMO

T cell activation plays a central role in immune response and in the maintenance of self-tolerance. We analyzed the evolutionary history of T cell regulatory molecules. Nine genes involved in triggering T cell activation or in regulating the ensuing response evolved adaptively in mammals. Several positively selected sites overlap with positions interacting with the binding partner or with cellular components. Population genetic analysis in humans revealed a complex scenario of local (FASLG, CD40LG, HAVCR2) and worldwide (FAS, ICOSLG) adaptation and H. sapiens-to-Neandertal gene flow (gene transfer between populations). Disease variants in these genes are preferential targets of pathogen-driven selection, and a Crohn's disease risk polymorphism targeted by bacterial-driven selection modulates the expression of ICOSLG in response to a bacterial superantigen. Therefore, we used evolutionary information to generate experimentally testable hypotheses concerning the function of specific genetic variants and indicate that adaptation to infection underlies the maintenance of autoimmune risk alleles.


Assuntos
Doenças Autoimunes/imunologia , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores/imunologia , Adaptação Fisiológica , Alelos , Animais , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Evolução Biológica , Fluxo Gênico , Predisposição Genética para Doença , Genética Populacional , Humanos , Ativação Linfocitária/genética , Homem de Neandertal , Polimorfismo de Nucleotídeo Único , Risco , Seleção Genética , Tolerância a Antígenos Próprios/genética
7.
J Chem Inf Model ; 62(19): 4748-4759, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126254

RESUMO

Determining the redox potentials of protein cofactors and how they are influenced by their molecular neighborhoods is essential for basic research and many biotechnological applications, from biosensors and biocatalysis to bioremediation and bioelectronics. The laborious determination of redox potential with current experimental technologies pushes forward the need for computational approaches that can reliably predict it. Although current computational approaches based on quantum and molecular mechanics are accurate, their large computational costs hinder their usage. In this work, we explored the possibility of using more efficient QSPR models based on machine learning (ML) for the prediction of protein redox potential, as an alternative to classical approaches. As a proof of concept, we focused on flavoproteins, one of the most important families of enzymes directly involved in redox processes. To train and test different ML models, we retrieved a dataset of flavoproteins with a known midpoint redox potential (Em) and 3D structure. The features of interest, accounting for both short- and long-range effects of the protein matrix on the flavin cofactor, have been automatically extracted from each protein PDB file. Our best ML model (XGB) has a performance error below 1 kcal/mol (∼36 mV), comparing favorably to more sophisticated computational approaches. We also provided indications on the features that mostly affect the Em value, and when possible, we rationalized them on the basis of previous studies.


Assuntos
Flavinas , Flavoproteínas , Flavinas/química , Flavinas/metabolismo , Flavoproteínas/química , Aprendizado de Máquina , Oxirredução
8.
Inorg Chem ; 60(1): 387-402, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33321036

RESUMO

In view of the depletion of fossil fuel reserves and climatic effects of greenhouse gas emissions, Ni,Fe-containing carbon monoxide dehydrogenase (Ni-CODH) enzymes have attracted increasing interest in recent years for their capability to selectively catalyze the reversible reduction of CO2 to CO (CO2 + 2H+ + 2e- ⇌ CO + H2O). The possibility of converting the greenhouse gas CO2 into useful materials that can be used as synthetic building blocks or, remarkably, as carbon fuels makes Ni-CODH a very promising target for reverse-engineering studies. In this context, in order to provide insights into the chemical principles underlying the biological catalysis of CO2 activation and reduction, quantum mechanics calculations have been carried out in the framework of density functional theory (DFT) on different-sized models of the Ni-CODH active site. With the aim of uncovering which stereoelectronic properties of the active site (known as the C-cluster) are crucial for the efficient binding and release of CO2, different coordination modes of CO2 to different forms and redox states of the C-cluster have been investigated. The results obtained from this study highlight the key role of the protein environment in tuning the reactivity and the geometry of the C-cluster. In particular, the protonation state of His93 is found to be crucial for promoting the binding or the dissociation of CO2. The oxidation state of the C-cluster is also shown to be critical. CO2 binds to Cred2 according to a dissociative mechanism (i.e., CO2 binds to the C-cluster after the release of possible ligands from Feu) when His93 is doubly protonated. CO2 can also bind noncatalytically to Cred1 according to an associative mechanism (i.e., CO2 binding is preceded by the binding of H2O to Feu). Conversely, CO2 dissociates when His93 is singly protonated and the C-cluster is oxidized at least to the Cint redox state.


Assuntos
Aldeído Oxirredutases/química , Dióxido de Carbono/química , Teoria da Densidade Funcional , Ferro/química , Complexos Multienzimáticos/química , Níquel/química , Aldeído Oxirredutases/metabolismo , Sítios de Ligação , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Níquel/metabolismo
9.
Chemistry ; 26(72): 17536-17545, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32722853

RESUMO

The electrochemical reduction of complexes [Fe2 (CO)4 (κ2 -phen)(µ-xdt)] (phen=1,10-phenanthroline; xdt=pdt (1), adtiPr (2)) in MeCN-[Bu4 N][PF6 ] 0.2 m is described as a two-reduction process. DFT calculations show that 1 and its monoreduced form 1- display metal- and phenanthroline-centered frontier orbitals (LUMO and SOMO) indicating the non-innocence of the phenanthroline ligand. Two energetically close geometries were found for the doubly reduced species suggesting an intriguing influence of the phenanthroline ligand leading to the cleavage of a Fe-S bond as proposed generally for this type of complex or retaining the electron density and avoiding Fe-S cleavage. Extension of calculations to other complexes with edt, adtiPr bridge and even virtual species [Fe2 (CO)4 (κ2 -phen)(µ-adtR )] (R=CH(CF3 )2 , H) or [Fe2 (CO)4 (κ2 -phen)(µ-pdtR )] (R=CH(CF3 )2 , iPr) showed that the relative stability between both two-electron-reduced isomers depends on the nature of the bridge and the possibility to establish a remote anagostic interaction between the iron center {Fe(CO)3 } and the group carried by the bridged-head atom of the dithiolate group.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Biomimética , Cristalografia por Raios X , Elétrons , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredução
10.
Chemphyschem ; 21(20): 2279-2292, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815583

RESUMO

It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i. e. with second reduction easier than the first. With the aim of revealing key factors to tailor the span between first and second redox potentials, we performed a systematic density functional study of a 26-molecule set of models with the general formula Fe2 (µ-PR2 )2 (L)6 . It turned out that specific features such as i) a Fe-Fe antibonding character of the LUMO, ii) presence of electron-donor groups and iii) low steric congestion in the Fe's coordination sphere, are key ingredients for PI. In particular, the synergic effects of i)-iii) can lead to a span between first and second redox potentials larger than 700 mV. More generally, the "molecular recipes" herein described are expected to inspire the synthesis of Fe2 P2 systems with tailored PI, of primary relevance to the design of electron-bifurcating molecular devices.

11.
Hum Mol Genet ; 26(17): 3271-3284, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633380

RESUMO

The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.


Assuntos
Ataxina-3/metabolismo , Catequina/análogos & derivados , Amiloide/metabolismo , Proteínas Amiloidogênicas , Animais , Caenorhabditis elegans/metabolismo , Catequina/química , Catequina/metabolismo , Modelos Animais de Doenças , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos , Fenóis/química , Fenóis/metabolismo
12.
Chemistry ; 25(5): 1227-1241, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30475417

RESUMO

Catalytic H2 oxidation has been dissected by means of DFT into the key steps common to the Fe2 unit of both the [FeFe]-hydrogenase cofactor and selected biomimics. The aim was to elucidate the molecular details underlying the very different performances of the two systems. We found that the better enzyme performance is based on a single iron atom that is maintained electron-poor, favoring H2 binding, although embedded within a highly electron-rich cofactor, ensuring a facile oxidation of the Fe2 -H2 adduct. This is due to 1) CN- coordinating to both iron atoms, due to their amphipathic Lewis acid/base properties, and 2) the 4Fe4S subunit further withdrawing electrons from the Fe2 core. Preserving a moderate electron deficiency at a single iron also helps the cofactor preserve hydride affinity, which favors H2 cleavage. Such valuable characteristics allow the biocatalyst to turnover close to equilibrium conditions. All previous biomimicry has shown, in contrast, the impossibility to properly balance the two apparently contrasting aforementioned requisites, although evident progress has been made by the H2 -ase community. Disclosure of the differences identified could inspire the design of novel biomimics, for instance, reconsidering the use of CN- in the catalyst architecture. Indeed, in the presence of bases normally employed in oxidative catalysis, undesired stable protonation at coordinated CN- , which affects the opposite process (proton reduction), could be overcome.

13.
Inorg Chem ; 58(1): 279-293, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576127

RESUMO

The apparently simple dihydrogen formation from protons and electrons (2H+ + 2e- ⇄ H2) is one of the most challenging reactions in nature. It is catalyzed by metalloenzymes of amazing complexity, called hydrogenases. A better understanding of the chemistry of these enzymes, especially that of the [NiFe]-hydrogenases subgroup, has important implications for production of H2 as alternative sustainable fuel. In this work, reactivation mechanism of the oxidized and inactive Ni-B and Ni-A states of the [NiFe]-hydrogenases active site has been investigated using density functional theory. Results obtained from this study show that one-electron reduction and protonation of the active site promote the removal of the bridging hydroxide ligand contained in Ni-B and Ni-A. However, this process is sufficient to activate only the Ni-B state. H2 binding to the active site is required to convert Ni-A to the active Ni-SIa state. Here, we also propose a reasonable structure for the spectroscopically well-characterized Ni-SIr and Ni-SU species, formed respectively from the one-electron reduction of Ni-B and Ni-A. Ni-SIr, depending on the pH at which the reaction occurs, features a bridging hydroxide ligand or a water molecule terminally coordinated to the Ni atom, whereas in Ni-SU a water molecule is terminally coordinated to the Fe atom, and the Cys64 residue is oxidized to sulfenate. The sulfenate oxygen atom in the Ni-A state affects the stereoelectronic properties of the binuclear cluster by modifying the coordination geometry of Ni, and consequently, by switching the regiochemistry of H2O and H2 binding from the Ni to the Fe atom. This effect is predicted to be at the origin of the different reactivation kinetics of the oxidized and inactive Ni-B and Ni-A states.

14.
Inorg Chem ; 58(1): 679-694, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30561200

RESUMO

The electrochemical behavior of complexes [FeMo(CO)5(κ2-dppe)(µ-pdt)] (1) and [FeMo(CO)4(MeCN)(κ2-dppe)(µ-pdt)] (2), in the absence and in the presence of acid, has been investigated. The reduction of 1 follows at slow scan rates, in CH2Cl2-[NBu4][PF6] and acid-free media, an ECrevE mechanism that is supported by cyclic voltammetry (CV) experiments and digital CV simulations. In MeCN-[NBu4][PF6], the electrochemical reduction of 1 is the same as in dichloromethane and follows an ECE mechanism at slow scan rates, but with a positive shift of the redox potentials. In contrast, the oxidation of 1 is strongly solvent-dependent. In dichloromethane, the oxidation of 1 is reversible and involves a single electron, while in acetonitrile, it is irreversible at moderate and slow scan rates ( v ≤ ca. 1 V s-1), and some chemical reversibility is apparent at higher scan rates ( v = 10 V s-1). Density functional theory calculations revealed that the chemical step in the ECrevE mechanism corresponds to the dissociation of one PPh2 end of the diphosphine ligand and the transfer of the semibridging CO to the Fe atom, similarly to the mechanism observed in the FeFe analogue complex. However, in the case of 1, the subsequent coordination of the phosphine ligand to the other metal is an unfavorable process.

15.
J Am Chem Soc ; 140(16): 5485-5492, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29590528

RESUMO

FeFe hydrogenases catalyze H2 oxidation and production using an "H-cluster", where two Fe ions are bound by an aza-dithiolate (adt) ligand. Various hypotheses have been proposed (by us and others) to explain that the enzyme reversibly inactivates under oxidizing, anaerobic conditions: intramolecular binding of the N atom of adt, formation of the so-called "Hox/inact" state or nonproductive binding of H2 to isomers of the H-cluster. Here, we show that none of the above explains the new finding that the anaerobic, oxidative, H2-dependent reversible inactivation is strictly dependent on the presence of Cl- or Br-. We provide experimental evidence that chloride uncompetitively inhibits the enzyme: it reversibly binds to catalytic intermediates of H2 oxidation (but not to the resting "Hox" state), after which oxidation locks the active site into a stable, saturated, inactive form, the structure of which is proposed here based on DFT calculations. The halides interact with the amine group of the H-cluster but do not directly bind to iron. It should be possible to stabilize the inhibited state in amounts compatible with spectroscopic investigations to explore further this unexpected reactivity of the H-cluster of hydrogenase.

16.
Chemistry ; 24(56): 15036-15051, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30011362

RESUMO

Electrochemical oxidation of the complex [Fe2 (CO)4 (κ2 -dmpe)(µ-adtBn )] (adtBn =(SCH2 )2 NCH2 C6 H5 , dmpe=Me2 PCH2 CH2 PMe2 ) (1) has been studied by cyclic voltammetry (CV) in acetonitrile and in dichloromethane in the presence of various substrates L (L=MeCN, trimethylphosphite, isocyanide). The oxidized species, [1-MeCN](PF6 )2 , [1-(P(OMe)3 )2 ](PF6 )2 and [1-(RNC)4 ](PF6 )2 (R=tert-butyl, xylyl), have been prepared and characterized by IR and NMR spectroscopies and, except [1-MeCN](PF6 )2 , by X-ray diffraction analysis. The crystallographic structures of the new FeII FeII complexes reveal that the association of one additional ligand (P(OMe)3 or RNC) occurs and, according to the nature of the substrates, further substitutions of one or three carbonyl groups, by P(OMe)3 or RNC, respectively, arise. Density functional theory (DFT) calculations have been performed to elucidate and discriminate, in each case, the mechanisms leading to the corresponding oxidized species. Moreover, the different degree of ligand substitution in the diiron core has been theoretically rationalized.

17.
Inorg Chem ; 57(1): 86-97, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232119

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes that facilitate the degradation of recalcitrant polysaccharides by the oxidative cleavage of glycosidic bonds. They are gaining rapidly increasing attention as key players in biomass conversion, especially for the production of second-generation biofuels. Elucidation of the detailed mechanism of the LPMO reaction is a major step toward the assessment and optimization of LPMO efficacy in industrial biotechnology, paving the way to utilization of sustainable fuel sources. Here, we used density functional theory calculations to study the reaction pathways suggested to date, exploiting a very large active-site model for a fungal AA9 LPMO and using a celloheptaose unit as a substrate mimic. We identify a copper oxyl intermediate as being responsible for H-atom abstraction from the substrate, followed by a rapid, water-assisted hydroxyl rebound, leading to substrate hydroxylation.


Assuntos
Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Polissacarídeos/metabolismo , Teoria Quântica , Biocatálise , Oxigenases de Função Mista/química , Modelos Moleculares , Polissacarídeos/química
18.
Phys Chem Chem Phys ; 20(3): 1693-1706, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29264600

RESUMO

The extraordinary capability of [NiFe]-hydrogenases to catalyse the reversible interconversion of protons and electrons into dihydrogen (H2) has stimulated numerous experimental and theoretical studies addressing the direct utilization of these enzymes in H2 production processes. Unfortunately, the introduction of these natural H2-catalysts in biotechnological applications is limited by their inhibition under oxidising (aerobic and anaerobic) conditions. With the aim of contributing to overcome this limitation, we studied the oxidative inactivation mechanism of [NiFe]-hydrogenases by performing Density Functional Theory (DFT) calculations on a very large model of their active site in which all the amino acids forming the first and second coordination spheres of the NiFe cluster have been explicitly included. We identified an O2 molecule and two H2O molecules as sources of the two oxygen atoms that are inserted at the active site of the inactive forms of the enzyme (Ni-A and Ni-B) under aerobic and anaerobic conditions, respectively. Furthermore, our results support the experimental evidence that the Ni-A-to-Ni-B ratio strongly depends on the number of reducing equivalents available for the process and on the oxidizing conditions under which the reaction takes place.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Chromatiaceae/enzimologia , Hidrogênio/química , Hidrogenase/metabolismo , Oxirredução , Oxigênio/química
19.
Nucleic Acids Res ; 44(19): 9096-9109, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27604871

RESUMO

Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling.


Assuntos
Proteínas de Transporte/metabolismo , DNA/genética , DNA/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , DNA/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteína Supressora de Tumor p53/química
20.
Mol Biol Evol ; 33(11): 2836-2847, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27512112

RESUMO

Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).


Assuntos
Filoviridae/fisiologia , Seleção Genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas de Transporte/genética , Ebolavirus/genética , Epitopos , Evolução Molecular , Filoviridae/genética , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Glicoproteínas de Membrana/genética , Filogenia , Proteínas de Transporte Vesicular/genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA