Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hematol Oncol ; 40(5): 962-975, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35961859

RESUMO

Chronic lymphocytic leukemia (CLL) is a hematological disorder with complex clinical and biological behavior. TP53 mutational status and cytogenetic assessment of the deletion of the corresponding locus (17p13.1) are considered the most relevant biomarkers associated with pharmaco-predictive response, chemo-refractoriness, and worse prognosis in CLL patients. The implementation of Next Generation Sequencing (NGS) methodologies in the clinical laboratory allows for comprehensively analyzing the TP53 gene and detecting mutations with allele frequencies ≤10%, that is, "subclonal mutations". We retrospectively studied TP53 gene mutational status by NGS in 220 samples from 171 CLL patients. TP53 mutations were found in 60/220 (27.3%) samples and 47/171 (27.5%) patients. Interestingly, subclonal mutations could be detected in 31/60 samples (51.7%) corresponding to 25 patients (25/47, 53.2%). We identified 44 distinct subclonal TP53 mutations clustered in the central DNA-binding domain of p53 protein (exons 5-8, codons 133-286). Missense mutations were predominant (>80%), whereas indels, nonsense, and splice site variants were less represented. All subclonal TP53 variants but one [p.(Pro191fs)] were already described in NCI and/or Seshat databases as "damaging" and/or "probably damaging" mutations (38/44, 86% and 6/44, 14%, respectively). Longitudinal samples were available for 37 patients. Almost half of them displayed at least one TP53 mutant subclone, which could be alone (4/16, 25%) or concomitant with other TP53 mutant clonal ones (12/16, 75%); different patterns of mutational dynamics overtimes were documented. In conclusion, utilization of NGS in our "real-life" cohort of CLL patients demonstrated an elevated frequency of subclonal TP53 mutations. This finding indicates the need for precisely identifying these mutations during disease since the clones carrying them may become predominant and be responsible for therapy failures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Linfocítica Crônica de Células B , Humanos , Proteína Supressora de Tumor p53/genética , Leucemia Linfocítica Crônica de Células B/genética , Estudos Retrospectivos
2.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682999

RESUMO

The study of circulating cancer-derived components (circulome) is considered the new frontier of liquid biopsy. Despite the recognized role of circulome biomarkers, their comparative molecular profiling is not yet routine. In advanced breast cancer (BC), approximately 40% of hormone-receptor-positive, HER2-negative BC cases harbor druggable PIK3CA mutations suitable for combined alpelisib/fulvestrant treatment. This pilot study investigates PIK3CA mutations in circulating tumor DNA (ctDNA), tumor cells (CTCs), and extracellular vesicles (EVs) with the aim of determining which information on molecular targetable profiling could be recollected in each of them. The in-depth molecular analysis of four BC patients demonstrated, as a proof-of-concept study, that it is possible to retrieve mutational information in the three components. Patient-specific PIK3CA mutations were found in both tissue and ctDNA and in 3/4 cases, as well as in CTCs, in the classical population (large-sized CD45-/EpCAM+/- cells), and/or in the "non-conventional" sub-population (smaller-sized CD44+/EpCAM-/CD45- cells). Consistent mutational profiles of EVs with CTCs suggest that they may have been released by CTCs. This preliminary evidence on the molecular content of the different circulating biomaterials suggests their possible function as a mirror of the intrinsic heterogeneity of BC. Moreover, this study demonstrates, through mutational assessment, the tumor origin of the different CTC sub-populations sustaining the translational value of the circulome for a more comprehensive picture of the disease.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Molécula de Adesão da Célula Epitelial/genética , Feminino , Humanos , Mutação , Células Neoplásicas Circulantes/patologia , Projetos Piloto
3.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575430

RESUMO

Molecular characterization of Circulating Tumor Cells (CTCs) is still challenging, despite attempts to minimize the drawbacks of Whole Genome Amplification (WGA). In this paper, we propose a Next-Generation Sequencing (NGS) optimized protocol based on molecular tagging technology, in order to detect CTCs mutations while skipping the WGA step. MDA-MB-231 and MCF-7 cell lines, as well as leukocytes, were sorted into pools (2-5 cells) using a DEPArray™ system and were employed to set up the overall NGS procedure. A substantial reduction of reagent volume for the preparation of libraries was performed, in order to fit the limited DNA templates directly derived from cell lysates. Known variants in TP53, KRAS, and PIK3CA genes were detected in almost all the cell line pools (35/37 pools, 94.6%). No additional alterations, other than those which were expected, were found in all tested pools and no mutations were detected in leukocytes. The translational value of the optimized NGS workflow is confirmed by sequencing CTCs pools isolated from eight breast cancer patients and through the successful detection of variants. In conclusion, this study shows that the proposed NGS molecular tagging approach is technically feasible and, compared to traditional NGS approaches, has the advantage of filtering out the artifacts generated during library amplification, allowing for the reliable detection of mutations and, thus, making it highly promising for clinical use.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Análise Mutacional de DNA/métodos , Células Neoplásicas Circulantes/química , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Medicina de Precisão , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Célula Única , Proteína Supressora de Tumor p53/genética
4.
Mol Med ; 25(1): 15, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029076

RESUMO

BACKGROUND: The demonstration of EGFR T790M gene mutation in plasma is crucial to assess the eligibility of Non Small Cell Lung Cancer (NSCLC) patients, who have acquired resistance to first or second generation Tyrosine Kinase Inhibitors (TKIs), to receive a subsequent treatment with osimertinib. Since circulating tumor DNA (ctDNA) is present in very low amounts in plasma, high sensitive and specific methods are required for molecular analysis. Improving sensitivity of T790M mutation detection in plasma ctDNA enables a larger number of NSCLC patients to receive the appropriate therapy without any further invasive procedure. METHODS: A tag-based next generation sequencing (NGS) platform capable of tagging rare circulating tumor DNA alleles was employed in this study for the identification of T790M mutation in 42 post-TKI NSCLC patients. RESULTS: Compared to Real Time PCR, tag-based NGS improved the T790M detection rate (42.85% versus 21.4%, respectively), especially in those cases with a low median mutation abundance (i.e. 0.24, range 0.07-0.78). Moreover, the tag-based NGS identified EGFR activating mutations more efficiently than Real Time PCR (85.7% versus 61.9% detection rate, respectively), particularly of the L858R variant type (0.06-0.75 mutation abundance range). Patients in whom the T790M mutation was detected in plasma, achieved an objective response to osimertinib (9/14, 64.28%). CONCLUSIONS: Tag-based NGS represents an accurate and sensitive tool in a clinical setting for non-invasive assessment and monitoring of T790M variant in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/genética , Receptores ErbB/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Feminino , Humanos , Masculino , Mutação/genética
5.
Cancer Treat Res Commun ; 41: 100839, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39217684

RESUMO

BACKGROUND: Molecular characterization is pivotal for managing non-small cell lung cancer (NSCLC), although this process is often time-consuming and patients' conditions might worsen while molecular analyses are processed. Our primary aim was to evaluate the performance of "up-front" next-generation sequencing (NGS) through liquid biopsy (LB) of hospitalized patients with newly detected lung neoplasm in parallel with conventional diagnosis. The secondary aim included longitudinal monitoring through LB of patients with oncogenic alterations at baseline. METHODS: We enrolled 47 consecutive patients immediately after hospitalization and radiological detection of symptomatic lung neoplasm. LB from peripheral blood was performed at baseline, in parallel with conventional biopsy (CB), when feasible. Additionally, LBs were repeated during treatment in patients with actionable gene alterations at baseline. Oncomine™ Lung cfTNA Research Assay panel was employed for processing plasma samples in NGS. RESULTS: 47 hospitalized patients were enrolled. LB identified 28 patients with gene alterations, including mutations of EGFR (n = 7), KRAS (n = 12), ERBB2 (n = 1), TP53 (n = 2), BRAF (n = 1), one ALK rearrangement, and 4 patients with combined mutations involving EGFR, KRAS and PIK3CA. LB and CB were consistent, except for two patients. Three patients with positive LB for oncogenic drivers did not undergo CB due to contraindications. Median time to molecular results after LB was significantly lower compared to time to molecular report after CB (11 versus 22 days, p < 0.001). CONCLUSIONS: Despite limited numbers, our study supports the role of front-line LB for improving management of symptomatic patients with lung cancer, potentially leading to early targeted therapy initiation.

6.
Front Immunol ; 14: 1221605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680633

RESUMO

Background: we evaluated the concordance between immunohistochemical p53 staining and TP53 mutations in a series of HGSOC. Moreover, we searched for prognostic differences between p53 overexpression and null expression groups. Methods: patients affected by HGSOC were included. For each case p53 immunohistochemical staining and molecular assay (Sanger sequencing) were performed. Kaplan-Meier survival analyses were undertaken to determine whether the type of TP53 mutation, or p53 staining pattern influenced overall survival (OS) and progression free survival (PFS). Results: 34 HGSOC were considered. All cases with a null immunohistochemical p53 expression (n=16) showed TP53 mutations (n=9 nonsense, n=4 in-frame deletion, n=2 splice, n=1 in-frame insertion). 16 out of 18 cases with p53 overexpression showed TP53 missense mutation. Follow up data were available for 33 out of 34 cases (median follow up time 15 month). We observed a significant reduction of OS in p53 null group [HR = 3.64, 95% CI 1.01-13.16]. Conclusion: immunohistochemical assay is a reliable surrogate for TP53 mutations in most cases. Despite the small cohort and the limited median follow up, we can infer that HGSOC harboring p53 null mutations are a more aggressive subgroup.


Assuntos
Mutação com Perda de Função , Neoplasias Ovarianas , Humanos , Feminino , Relevância Clínica , Proteína Supressora de Tumor p53/genética , Mutação , Neoplasias Ovarianas/genética
7.
Neuro Oncol ; 25(10): 1775-1787, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074930

RESUMO

BACKGROUND: Meningiomas are mainly benign brain tumors, although about 20% of histologically benign cases are clinically aggressive and recur after resection. We hypothesize that meningioma brain invasiveness and recurrence may be related to the presence of cancer stem cells and their high responsiveness to the CXCL12-CXCR4/CXCR7 chemokine axis. The aim of this study was to isolate meningioma stem cells from human samples, characterize them for biological features related to malignant behavior, and to identify the role of CXCR4/CXCR7 in these processes. METHODS: Meningioma stem cells were isolated from patient-derived primary cultures in stem cell-permissive conditions, and characterized for phenotype, self-renewal, proliferation and migration rates, vasculogenic mimicry (VM), and in vivo tumorigenesis, in comparison with differentiated meningioma cells and stem-like cells isolated from normal meninges. These cell populations were challenged with CXCL12 and CXCL11 and receptor antagonists to define the chemokine role in stem cell-related functions. RESULTS: Stem-like cells isolated from meningioma cultures display higher proliferation and migration rates, and VM, as compared to meningioma non-stem cells or cells isolated from normal meninges and were the only tumorigenic population in vivo. In meningioma cells, these stem-like functions were under the control of the CXCR4/CXCR7 chemokine axis. CONCLUSIONS: We report a role for CXCL11 and CXCL12 in the control of malignant features in stem-like cells isolated from human meningioma, providing a possible basis for the aggressive clinical behavior observed in subsets of these tumors. CXCR4/CXCR7 antagonists might represent a useful approach for meningioma at high risk of recurrence and malignant progression.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Receptores CXCR , Humanos , Quimiocina CXCL12/genética , Receptores CXCR/genética , Receptores CXCR4/genética , Transdução de Sinais , Quimiocina CXCL11
8.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884472

RESUMO

To date, the 5-year overall survival rate of 60% for early-stage non-small cell lung cancer (NSCLC) is still unsatisfactory. Therefore, reliable prognostic factors are needed. Growing evidence shows that cancer progression may depend on an interconnection between cancer cells and the surrounding tumor microenvironment; hence, circulating molecules may represent promising markers of cancer recurrence. In order to identify a prognostic score, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs (Exo-miR) and peptides, in 67 radically resected NSCLCs. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in progressing patients. Notably, stepwise Cox regression analysis selected Exo-miR-130a-3p and the greatest FpA (2-16) to build a score predictive of recurrence, where high-risk patients had 18 months of median disease-free survival. Moreover, in vitro transfections showed that higher levels of miR-130a-3p lead to a deregulation of pathways involved in metastasis and angiogenesis, including the coagulation process and metalloprotease increase which might be linked to FpA reduction. In conclusion, by integrating circulating markers, the identified risk score may help clinicians predict early-stage NSCLC patients who are more likely to relapse after primary surgery.

9.
Mol Diagn Ther ; 25(5): 537-547, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224097

RESUMO

Liquid biopsy (LB) is a promising tool that is rapidly evolving as a standard of care in early and advanced stages of cancer settings. Next-generation sequencing (NGS) methods have become essential in molecular diagnostics and clinical laboratories dealing with LB analytes, i.e., cell-free DNA and RNA. The sensitivity and high-throughput capacity of NGS enable us to overcome technical issues that are mainly attributable to low-abundance (below 1% mutated allelic frequency) tumour genetic material circulating within biological fluids. In this context, the introduction of unique molecular identifiers (UMIs), also known as molecular barcodes, applied to various NGS platforms greatly improved the characterization of rare genetic alterations, as they resulted in a drastic reduction in background noise while maintaining high levels of positive predictive value and sensitivity. Different UMI strategies have been developed, such as single (e.g., safe-sequencing system, Safe-SeqS) or double (duplex-sequencing system, Duplex-Seq) strand-based labelling, and, currently, considerable results corroborate their potential implementation in a routine laboratory. Recently, the US Food and Drug Administration approved the clinical use of two comprehensive UMI-based NGS assays (FoundationOne Liquid CDx and Guardant360 CDx) in cfDNA mutational assessment. However, to definitively translate LB into clinical practice, UMI-based NGS protocols should meet certain feasibility requirements in terms of cost-effectiveness, wet laboratory performance and easy access to web-source and bioinformatic tools for downstream molecular data.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Cutâneas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Laboratórios Clínicos , Biópsia Líquida
10.
Cancer Res ; 81(3): 724-731, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148663

RESUMO

Radiomics is defined as the use of automated or semi-automated post-processing and analysis of multiple features derived from imaging exams. Extracted features might generate models able to predict the molecular profile of solid tumors. The aim of this study was to develop a predictive algorithm to define the mutational status of EGFR in treatment-naïve patients with advanced non-small cell lung cancer (NSCLC). CT scans from 109 treatment-naïve patients with NSCLC (21 EGFR-mutant and 88 EGFR-wild type) underwent radiomics analysis to develop a machine learning model able to recognize EGFR-mutant from EGFR-WT patients via CT scans. A "test-retest" approach was used to identify stable radiomics features. The accuracy of the model was tested on an external validation set from another institution and on a dataset from the Cancer Imaging Archive (TCIA). The machine learning model that considered both radiomic and clinical features (gender and smoking status) reached a diagnostic accuracy of 88.1% in our dataset with an AUC at the ROC curve of 0.85, whereas the accuracy values in the datasets from TCIA and the external institution were 76.6% and 83.3%, respectively. Furthermore, 17 distinct radiomics features detected at baseline CT scan were associated with subsequent development of T790M during treatment with an EGFR inhibitor. In conclusion, our machine learning model was able to identify EGFR-mutant patients in multiple validation sets with globally good accuracy, especially after data optimization. More comprehensive training sets might result in further improvement of radiomics-based algorithms. SIGNIFICANCE: These findings demonstrate that data normalization and "test-retest" methods might improve the performance of machine learning models on radiomics images and increase their reliability when used on external validation datasets.


Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Mutação , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Área Sob a Curva , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Curva ROC , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
11.
Sci Rep ; 10(1): 18427, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116240

RESUMO

Chronic lymphocytic leukaemia (CLL) is characterised by a heterogeneous clinical course. Such heterogeneity is associated with a number of markers, including TP53 gene inactivation. While TP53 gene alterations determine resistance to chemotherapy, it is not clear whether they can influence early disease progression. To clarify this issue, TP53 mutations and deletions of the corresponding locus [del(17p)] were evaluated in 469 cases from the O-CLL1 observational study that recruited a cohort of clinically and molecularly characterised Binet stage A patients. Twenty-four cases harboured somatic TP53 mutations [accompanied by del(17p) in 9 cases], 2 patients had del(17p) only, and 5 patients had TP53 germ-line variants. While del(17p) with or without TP53 mutations was capable of significantly predicting the time to first treatment, a reliable measure of disease progression, TP53 mutations were not. This was true for cases with high or low variant allele frequency. The lack of predictive ability was independent of the functional features of the mutant P53 protein in terms of transactivation and dominant negative potential. TP53 mutations alone were more frequent in patients with mutated IGHV genes, whereas del(17p) was associated with the presence of adverse prognostic factors, including CD38 positivity, unmutated-IGHV gene status, and NOTCH1 mutations.


Assuntos
Genes p53 , Leucemia Linfocítica Crônica de Células B/genética , Tempo para o Tratamento , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Prospectivos
12.
Expert Opin Investig Drugs ; 29(8): 869-880, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32551999

RESUMO

INTRODUCTION: Patients with TP53 dysfunction, assessed by del(17p) or TP53 mutations, respond poorly to chemo-immunotherapy and fare better with the new therapies (BCR and BCL-2 inhibitors); however, it is unclear whether their response is similar to that of patients without anomalies or whether there is currently an adequate determination of TP53 dysfunction. AREA COVERED: A literature search was undertaken on clinical trials and real-world experience data on patients with TP53 dysfunction treated with different protocols. Moreover, data on the TP53 biological function and on the tests currently employed for its assessment were reviewed. EXPERT OPINION: Although TP53 dysfunction has less negative influence on the new biological therapies, patients with these alterations, particularly those with biallelic inactivation of TP53, have a worst outcome with these therapies than those without alterations. At present, a determination of TP53, particularly with next generation sequencing (NGS) methodologies, may be sufficient for the identifications of the patients unsuitable for chemo-immunotherapy, although integration with del(17p) would be advisable. For the future, more extensive determinations of the TP53 status, including functional assays, may become part of the current armamentarium for a better patient stratification and treatment with newer protocols.


Assuntos
Antineoplásicos/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA