Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2016): 20231917, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320606

RESUMO

Understanding the spatial scales at which organisms can adapt to strong natural and human-induced environmental gradients is important. Salinization is a key threat to biodiversity, ecosystem functioning and the provision of ecosystem services of freshwater systems. Clusters of naturally saline habitats represent ideal test cases to study the extent and scale of local adaptation to salinization. We studied local adaptation of the water flea Daphnia magna, a key component of pond food webs, to salinity in two contrasting landscapes-a dense cluster of sodic bomb crater ponds and a larger-scale cluster of soda pans. We show regional differentiation in salinity tolerance reflecting the higher salinity levels of soda pans versus bomb crater ponds. We found local adaptation to differences in salinity levels at the scale of tens of metres among bomb crater pond populations but not among geographically more distant soda pan populations. More saline bomb crater ponds showed an upward shift of the minimum salt tolerance observed across clones and a consequent gradual loss of less tolerant clones in a nested pattern. Our results show evolutionary adaptation to salinity gradients at different spatial scales, including fine-tuned local adaptation in neighbouring habitat patches in a natural landscape.


Assuntos
Ecossistema , Tolerância ao Sal , Animais , Biodiversidade , Daphnia , Água Doce , Salinidade
2.
J Anim Ecol ; 93(7): 906-917, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38807348

RESUMO

Predators can strongly influence prey populations not only through consumptive effects (CE) but also through non-consumptive effects (NCE) imposed by predation risk. Yet, the impact of NCE on bioenergetic and stoichiometric body contents of prey, traits that are shaping life histories, population and food web dynamics, is largely unknown. Moreover, the degree to which NCE can evolve and can drive evolution in prey populations is rarely studied. A 6-week outdoor mesocosm experiment with Caged-Fish (NCE) and Free-Ranging-Fish (CE and NCE) treatments was conducted to quantify and compare the effects of CE and NCE on population densities, bioenergetic and stoichiometric body contents of Daphnia magna, a keystone species in freshwater ecosystems. We tested for evolution of CE and NCE by using experimental populations consisting of D. magna clones from two periods of a resurrected natural pond population: a pre-fish period without fish and a high-fish period with high predation pressure. Both Caged-Fish and Free-Ranging-Fish treatments decreased the body size and population densities, especially in Daphnia from the high-fish period. Only the Free-Ranging-Fish treatment affected bioenergetic variables, while both the Caged-Fish and Free-Ranging-Fish treatments shaped body stoichiometry. The effects of CE and NCE were different between both periods indicating their rapid evolution in the natural resurrected population. Both the Caged-Fish and Free-Ranging-Fish treatments changed the clonal frequencies of the experimental Daphnia populations of the pre-fish as well as the high-fish period, indicating that not only CE but also NCE induced clonal sorting, hence rapid evolution during the mesocosm experiment in both periods. Our results demonstrate that CE as well as NCE have the potential to change not only the body size and population density but also the bioenergetic and stoichiometric characteristics of prey populations. Moreover, we show that these responses not only evolved in the studied resurrected population, but that CE and NCE also caused differential rapid evolution in a time frame of 6 weeks (ca. four to six generations). As NCE can evolve as well as can drive evolution, they may play an important role in shaping eco-evolutionary dynamics in predator-prey interactions.


Assuntos
Daphnia , Metabolismo Energético , Cadeia Alimentar , Densidade Demográfica , Comportamento Predatório , Animais , Daphnia/fisiologia , Evolução Biológica
3.
Nature ; 558(7708): 113-116, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795350

RESUMO

Body size is intrinsically linked to metabolic rate and life-history traits, and is a crucial determinant of food webs and community dynamics1,2. The increased temperatures associated with the urban-heat-island effect result in increased metabolic costs and are expected to drive shifts to smaller body sizes 3 . Urban environments are, however, also characterized by substantial habitat fragmentation 4 , which favours mobile species. Here, using a replicated, spatially nested sampling design across ten animal taxonomic groups, we show that urban communities generally consist of smaller species. In addition, although we show urban warming for three habitat types and associated reduced community-weighted mean body sizes for four taxa, three taxa display a shift to larger species along the urbanization gradients. Our results show that the general trend towards smaller-sized species is overruled by filtering for larger species when there is positive covariation between size and dispersal, a process that can mitigate the low connectivity of ecological resources in urban settings 5 . We thus demonstrate that the urban-heat-island effect and urban habitat fragmentation are associated with contrasting community-level shifts in body size that critically depend on the association between body size and dispersal. Because body size determines the structure and dynamics of ecological networks 1 , such shifts may affect urban ecosystem function.


Assuntos
Organismos Aquáticos/fisiologia , Tamanho Corporal/fisiologia , Ecossistema , Temperatura Alta , Urbanização , Animais , Biodiversidade , Clima
4.
Proc Biol Sci ; 290(1990): 20222289, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629114

RESUMO

Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.


Assuntos
Daphnia , Temperatura Alta , Animais , Daphnia/fisiologia , Fertilidade , Fenótipo , Crescimento Demográfico , Temperatura
5.
Ecol Appl ; 33(7): e2900, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37335538

RESUMO

Exposure to pesticides can profoundly alter community dynamics. It is expected that dominance patterns will be enhanced or reduced depending on whether the dominant species is less or more sensitive to the pesticide than the subdominant species. Community dynamics are, however, also determined by processes linked to population growth as well as competition at carrying capacity. Here, we used a mesocosm experiment to quantify the effect of chlorpyrifos exposure on the population dynamics of four cladoceran species (Daphnia magna, Daphnia pulicaria, Daphnia galeata and Scapholeberis mucronata) in mixed cultures, testing for direct effects of chlorpyrifos and indirect effects mediated by interactions with other species on the timing of population growth and dominance at carrying capacity. We also quantified whether the pesticide-induced changes in community dynamics affected top-down control of phytoplankton. By adding a treatment in which we used different genotype combinations of each species, we also tested to what extent genetic composition affects community responses to pesticide exposure. Immobilization tests showed that D. magna is the least sensitive to chlorpyrifos of the tested species. Chlorpyrifos exposure first leads to a reduction in the abundance of D. galeata to the benefit of D. pulicaria, and subsequently to a reduction in densities of D. pulicaria to the benefit of D. magna. This resulted in D. magna being more dominant in the pesticide than in the control treatment by the end of the experiment. There was no effect of genotypic differences on community patterns, and top-down control of phytoplankton was high in all treatments. Our results suggest that in this community dominance patterns are enhanced in line with the observed among-species differences in sensitivity to the pesticide. Our results also show that the development of the community in pesticide treatment is a complex interaction between direct and indirect effects of the pesticide.


Assuntos
Clorpirifos , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Clorpirifos/toxicidade , Zooplâncton , Daphnia , Fitoplâncton , Poluentes Químicos da Água/toxicidade
6.
Microb Ecol ; 85(2): 400-410, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35306576

RESUMO

Biotic interactions are suggested to be key factors structuring bacterioplankton community assembly but are rarely included in metacommunity studies. Eutrophication of ponds and lakes provides a useful opportunity to evaluate how bacterioplankton assembly is affected by specific environmental conditions, especially also by biotic interactions with other trophic levels such as phytoplankton and zooplankton. Here, we evaluated the importance of deterministic and stochastic processes on bacterioplankton community assembly in 35 shallow ponds along a eutrophication gradient in Belgium and assessed the direct and indirect effects of phytoplankton and zooplankton community variation on bacterioplankton assembly through a path analysis and network analysis. Environmental filtering by abiotic factors (suspended matter concentration and pH) explained the largest part of the bacterioplankton community variation. Phytoplankton community structure affected bacterioplankton structure through its effect on variation in chlorophyll-a and suspended matter concentration. Bacterioplankton communities were also spatially structured through pH. Overall, our results indicate that environmental variation is a key component driving bacterioplankton assembly along a eutrophication gradient and that indirect biotic interactions can also be important in explaining bacterioplankton community composition. Furthermore, eutrophication led to divergence in community structure and more eutrophic ponds had a higher diversity of bacteria.


Assuntos
Ecossistema , Fitoplâncton , Animais , Organismos Aquáticos , Eutrofização , Zooplâncton , Lagos/microbiologia
7.
Proc Natl Acad Sci U S A ; 117(30): 17482-17490, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32641501

RESUMO

Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.


Assuntos
Evolução Biológica , Ecossistema , Meio Ambiente Extraterreno , Biodiversidade , Biomassa , Nutrientes , Dinâmica Populacional
8.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854211

RESUMO

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
9.
Proc Biol Sci ; 289(1974): 20220188, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506228

RESUMO

Predators can strongly influence prey populations through both consumptive and non-consumptive effects. Nevertheless, most studies have focused on the consumptive effects in driving evolutionary changes. By integrating experimental evolution and resurrection ecology, we tested the roles of non-consumptive and consumptive effects in driving evolution in a Daphnia magna population that experienced strong changes in fish predation pressure. All resurrected genotypes were pooled, inoculated in outdoor mesocosms, and exposed to free-fish or caged-fish treatments. Non-consumptive effects induced rapid, repeatable changes in the clonal composition and associated genotypic trait changes that were similar in magnitude and direction to those imposed by killing. Both non-consumptive and consumptive effects caused a shift towards a dominance of the high-fish period clones that can perform better under fish predation, and this may be explained by the higher intrinsic growth rate of the high-fish period clones under predation risk. The genotypic trait changes (e.g. reduced body sizes, earlier maturation, more and smaller offspring) of the Daphnia in the mesocosm experiments were in the same direction as the adaptive trait shifts observed in situ through resurrection ecology. Our results demonstrate that non-consumptive effects can induce rapid adaptive evolution and may represent an overlooked driver of eco-evolutionary dynamics.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Daphnia , Ecologia , Peixes
10.
J Anim Ecol ; 91(3): 514-526, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34606084

RESUMO

Most research on eco-evolutionary feedbacks focuses on ecological consequences of evolution in a single species. This ignores the fact that evolution in response to a shared environmental factor in multiple species involved in interactions could alter the net cumulative effect of evolution on ecology. We empirically tested whether urbanization-driven evolution in a predator (nymphs of the damselfly Ischnura elegans) and its prey (the water flea Daphnia magna) jointly shape the outcome of predation under simulated heatwaves. Both interactors show genetic trait adaptation to urbanization, particularly to higher temperatures. We cross-exposed common-garden reared damselflies and Daphnia from replicated urban and rural populations, and quantified predation rates and functional response traits. Urban damselfly nymphs showed higher encounter and predation rates than rural damselflies when exposed to rural prey, but this difference disappeared when they preyed on urban Daphnia. This represents a case of a cryptic evo-to-eco feedback, where the evolution of one species dampens the effects of the evolution of another species on their interaction strength. The effects of evolution of each single species were strong: the scenario in which only the predator or prey was adapted to urbanization resulted in a c. 250% increase in encounter rate and a c. 25% increase in predation rate, compared to the rural predator-rural prey combination. Our results provide unique evidence for eco-evolutionary feedbacks in cities, and underscore the importance of a multi-species approach in eco-evolutionary dynamics research.


Assuntos
Evolução Biológica , Odonatos , Animais , Cidades , Retroalimentação , Comportamento Predatório/fisiologia
11.
Proc Natl Acad Sci U S A ; 116(7): 2612-2617, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30651307

RESUMO

Biodiversity in natural systems can be maintained either because niche differentiation among competitors facilitates stable coexistence or because equal fitness among neutral species allows for their long-term cooccurrence despite a slow drift toward extinction. Whereas the relative importance of these two ecological mechanisms has been well-studied in the absence of evolution, the role of local adaptive evolution in maintaining biological diversity through these processes is less clear. Here we study the contribution of local adaptive evolution to coexistence in a landscape of interconnected patches subject to disturbance. Under these conditions, early colonists to empty patches may adapt to local conditions sufficiently fast to prevent successful colonization by other preadapted species. Over the long term, the iteration of these local-scale priority effects results in niche convergence of species at the regional scale even though species tend to monopolize local patches. Thus, the dynamics evolve from stable coexistence through niche differentiation to neutral cooccurrence at the landscape level while still maintaining strong local niche segregation. Our results show that neutrality can emerge at the regional scale from local, niche-based adaptive evolution, potentially resolving why ecologists often observe neutral distribution patterns at the landscape level despite strong niche divergence among local communities.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Biodiversidade , Modelos Teóricos
12.
Ecotoxicol Environ Saf ; 240: 113697, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653979

RESUMO

Exposure to pesticides can have detrimental effects on aquatic communities of non-target species. Populations can evolve tolerance to pesticides which may rescue them from extinction. However, the evolution of tolerance does not always occur and insights in the underlying mechanisms are scarce. One understudied mechanism to obtain pesticide tolerance in hosts are shifts toward pesticide-degrading bacteria in their microbiome. We carried out experimental evolution trials where replicated experimental populations of the water flea Daphnia magna were exposed to the pesticide chlorpyrifos or a solvent control, after which we performed acute toxicity assays to evaluate the evolution of chlorpyrifos tolerance. Additionally, we quantified changes in the microbiota community composition of whole body and gut samples to assess which sample type best reflected the pesticide tolerance of the Daphnia host. As expected, chlorpyrifos-selected clones became more tolerant to chlorpyrifos as shown by the higher EC5048 h (36% higher) compared with the control clones. This was associated with shifts in the microbiome composition whereby the abundance of known organophosphate-degrading bacterial genera increased on average ~4 times in the chlorpyrifos-selected clones. Moreover, the abundances of several genera, including the organophosphate-degrading bacteria Pseudomonas, Flavobacterium and Bacillus, were positively correlated with the EC5048 h of the host populations. These shifts in bacterial genera were similar in magnitude in whole body and gut samples, yet the total abundance of organophosphate-degrading bacteria was ~6 times higher in the whole body samples, suggesting that the gut is not the only body part where pesticide degradation by the microbiome occurs. Our results indicate that the microbiome is an important mediator of the development of tolerance to pesticides in Daphnia.


Assuntos
Clorpirifos , Cladocera , Microbiota , Praguicidas , Animais , Clorpirifos/toxicidade , Daphnia , Praguicidas/toxicidade
13.
Am Nat ; 198(4): E95-E110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34559612

RESUMO

AbstractTo what extent does landscape genetic structure bear the signature of arrival order of lineages during population assembly? Rapid genetic adaptation of resident populations founded by early colonists to local conditions might prevent establishment of later-arriving lineages, resulting in an evolution-mediated priority effect. This might result in a limited window of opportunity for establishment during which the resident population did not have sufficient time yet to monopolize the patch through local adaptation. The length of this window of opportunity is expected to depend on the degree to which early colonists and immigrants are preadapted to local habitat conditions. We present an intraspecific competition model of the initial transient population and evolutionary dynamics that quantifies the window of opportunity for establishment for asexual species. The model explicitly addresses the long-lasting effects of evolution-mediated priority effects by tracking lineages through time. Our results show that the difference in initial preadaptation between early colonists and late immigrants and the speed of evolution codetermine the window of opportunity for establishment. Our results also suggest that local populations should often be dominated by descendants of just a few early colonist lineages and that landscape genetic structure should often reflect the legacy of colonization history.


Assuntos
Evolução Biológica , Emigrantes e Imigrantes , Aclimatação , Adaptação Fisiológica , Ecossistema , Humanos , Dinâmica Populacional
14.
Am Nat ; 198(6): E185-E197, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762570

RESUMO

AbstractThere is growing concern about the dire socioecological consequences of abrupt transitions between alternative ecosystem states in response to environmental changes. At the same time, environmental change can trigger evolutionary responses that could stabilize or destabilize ecosystem dynamics. However, we know little about how coupled ecological and evolutionary processes affect the risk of transition between alternative ecosystem states. Using shallow lakes as a model ecosystem, we investigate how trait evolution of a key species affects ecosystem resilience under environmental stress. We find that adaptive evolution of macrophytes can increase ecosystem resilience by shifting the critical threshold, which marks the transition from a clear-water state to a turbid-water state to a higher level of environmental stress. However, following the transition, adaptation to the turbid-water state can delay the ecosystem recovery back to the clear-water state. This implies that restoration could be more effective when implemented early enough after a transition occurs and before organisms adapt to the alternative state. Our findings provide new insights into how to prevent and mitigate the occurrence of regime shifts in ecosystems and highlight the need to understand ecosystem responses to environmental change in the context of coupled ecological and evolutionary processes.


Assuntos
Ecossistema , Lagos , Aclimatação , Fenótipo , Água
15.
Proc Biol Sci ; 288(1963): 20211903, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34784768

RESUMO

Pesticide application is an important stressor to non-target species and can profoundly affect ecosystem functioning. Debates continue on the choice of agricultural practices regarding their environmental impact, and organic farming is considered less detrimental compared to conventional practices. Nevertheless, comparative studies on the impacts of both agricultural approaches on the genetic adaptation of non-target species are lacking. We assessed to what extent organic and conventional agriculture elicit local genetic adaptation of populations of a non-target aquatic species, Daphnia magna. We tested for genetic differences in sensitivity of different D. magna populations (n = 7), originating from ponds surrounded by conventional and organic agriculture as well as nature reserves, to pesticides used either in conventional (chlorpyrifos) or organic agriculture (deltamethrin and copper sulfate). The results indicate that D. magna populations differentially adapt to local pesticide use. Populations show increased resistance to chlorpyrifos as the percentage of conventional agriculture in the surrounding landscape increases, whereas populations from organic agriculture sites are more resistant to deltamethrin. While organic agriculture is considered less harmful for non-target species than conventional, both types of agriculture shape the evolution of pesticide resistance in non-target species in a specific manner, reflecting the differences in selection pressure.


Assuntos
Praguicidas , Agricultura , Animais , Daphnia/genética , Ecossistema , Meio Ambiente , Agricultura Orgânica
16.
Mol Ecol ; 30(10): 2285-2297, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33720474

RESUMO

Populations rely on already present plastic responses (ancestral plasticity) and evolution (including both evolution of mean trait values, constitutive evolution, and evolution of plasticity) to adapt to novel environmental conditions. Because of the lack of evidence from natural populations, controversy remains regarding the interplay between ancestral plasticity and rapid evolution in driving responses to new stressors. We addressed this topic at the level of the metabolome utilizing a resurrected natural population of the water flea Daphnia magna that underwent a human-caused increase followed by a reduction in predation pressure within ~16 years. Predation risk induced plastic changes in the metabolome which were mainly related to shifts in amino acid and sugar metabolism, suggesting predation risk affected protein and sugar utilization to increase energy supply. Both the constitutive and plastic components of the metabolic profiles showed rapid, probably adaptive evolution whereby ancestral plasticity and evolution contributed nearly equally to the total changes of the metabolomes. The subpopulation that experienced the strongest fish predation pressure and showed the strongest phenotypic response, also showed the strongest metabolomic response to fish kairomones, both in terms of the number of responsive metabolites and in the amplitude of the multivariate metabolomic reaction norm. More importantly, the metabolites with higher ancestral plasticity showed stronger evolution of plasticity when predation pressure increased, while this pattern reversed when predation pressure relaxed. Our results therefore highlight that the evolution in response to a novel pressure in a natural population magnified the metabolomic plasticity to this stressor.


Assuntos
Daphnia , Comportamento Predatório , Adaptação Fisiológica , Animais , Daphnia/genética , Humanos , Metaboloma , Fenótipo
17.
PLoS Genet ; 14(11): e1007796, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30422983

RESUMO

When environments change, populations may adapt surprisingly fast, repeatedly and even at microgeographic scales. There is increasing evidence that such cases of rapid parallel evolution are fueled by standing genetic variation, but the source of this genetic variation remains poorly understood. In the saltmarsh beetle Pogonus chalceus, short-winged 'tidal' and long-winged 'seasonal' ecotypes have diverged in response to contrasting hydrological regimes and can be repeatedly found along the Atlantic European coast. By analyzing genomic variation across the beetles' distribution, we reveal that alleles selected in the tidal ecotype are spread across the genome and evolved during a singular and, likely, geographically isolated divergence event, within the last 190 Kya. Due to subsequent admixture, the ancient and differentially selected alleles are currently polymorphic in most populations across its range, which could potentially allow for the fast evolution of one ecotype from a small number of random individuals, as low as 5 to 15, from a population of the other ecotype. Our results suggest that cases of fast parallel ecological divergence can be the result of evolution at two different time frames: divergence in the past, followed by repeated selection on the same divergently evolved alleles after admixture. These findings highlight the importance of an ancient and, likely, allopatric divergence event for driving the rate and direction of contemporary fast evolution under gene flow. This mechanism is potentially driven by periods of geographic isolation imposed by large-scale environmental changes such as glacial cycles.


Assuntos
Besouros/genética , Alelos , Animais , Oceano Atlântico , Besouros/anatomia & histologia , Besouros/classificação , Ecossistema , Ecótipo , Europa (Continente) , Evolução Molecular , Fluxo Gênico , Especiação Genética , Variação Genética , Genética Populacional , Genoma de Inseto , Modelos Genéticos , Filogenia , Polimorfismo Genético , Fatores de Tempo
18.
Ecol Lett ; 23(9): 1314-1329, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32672410

RESUMO

The metacommunity concept has the potential to integrate local and regional dynamics within a general community ecology framework. To this end, the concept must move beyond the discrete archetypes that have largely defined it (e.g. neutral vs. species sorting) and better incorporate local scale species interactions and coexistence mechanisms. Here, we present a fundamental reconception of the framework that explicitly links local coexistence theory to the spatial processes inherent to metacommunity theory, allowing for a continuous range of competitive community dynamics. These dynamics emerge from the three underlying processes that shape ecological communities: (1) density-independent responses to abiotic conditions, (2) density-dependent biotic interactions and (3) dispersal. Stochasticity is incorporated in the demographic realisation of each of these processes. We formalise this framework using a simulation model that explores a wide range of competitive metacommunity dynamics by varying the strength of the underlying processes. Using this model and framework, we show how existing theories, including the traditional metacommunity archetypes, are linked by this common set of processes. We then use the model to generate new hypotheses about how the three processes combine to interactively shape diversity, functioning and stability within metacommunities.


Assuntos
Ecossistema , Modelos Biológicos , Biota , Ecologia , Dinâmica Populacional
19.
Glob Chang Biol ; 26(3): 1196-1211, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755626

RESUMO

The increasing urbanization process is hypothesized to drastically alter (semi-)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno-terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground- and web spiders, macro-moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local-scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape-scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.


Assuntos
Borboletas , Besouros , Animais , Biodiversidade , Ecossistema , Urbanização
20.
J Hered ; 111(1): 1-20, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958131

RESUMO

Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.


Assuntos
Adaptação Biológica , Especiação Genética , Animais , Filogeografia , Plantas , Análise Espacial , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA