Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426368

RESUMO

The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations. To assess the factors influencing the population dynamics of this species, we applied generalised additive models. These models allowed us to quantify the relative contribution of temperature, nutrient levels, salinity, turbidity, concentrations of photosynthetic pigments, as well as chemical pollutants such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs), on copepod density. Temperature and Secchi depth, a proxy for turbidity, were the most important environmental variables predicting the densities of T. longicornis, followed by summed PAH and chlorophyll concentrations. Analysing gene expression in field-collected adults, we observed significant variation in metabolic and stress-response genes. Temperature correlated significantly with genes involved in proteolytic activities, and encoding heat shock proteins. Yet, concentrations of anthropogenic chemicals did not induce significant differences in the gene expression of genes involved in the copepod's fatty acid metabolism or well-known stress-related genes, such as glutathione transferases or cytochrome P450. Our study highlights the potential of gene expression biomonitoring and underscores the significance of a changing environment in future studies.

2.
Environ Sci Technol ; 55(9): 6184-6196, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843191

RESUMO

To date, few studies have examined the role of sea spray aerosols (SSAs) in human exposure to harmful and beneficial marine compounds. Two groups of phycotoxins (brevetoxins and ovatoxins) have been reported to induce respiratory syndromes during harmful algal blooms. The aerosolization and coastal air concentrations of other common marine phycotoxins have, however, never been examined. This study provides the first (experimental) evidence and characterization of the aerosolization of okadaic acid (OA), homoyessotoxin, and dinophysistoxin-1 using seawater spiked with toxic algae combined with the realistic SSA production in a marine aerosol reference tank (MART). The potential for aerosolization of these phycotoxins was highlighted by their 78- to 1769-fold enrichment in SSAs relative to the subsurface water. To obtain and support these results, we first developed an analytical method for the determination of phycotoxin concentrations in SSAs, which showed good linearity (R2 > 0.99), recovery (85.3-101.8%), and precision (RSDs ≤ 17.2%). We also investigated natural phycotoxin air concentrations by means of in situ SSA sampling with concurrent aerosolization experiments using natural seawater in the MART. This approach allowed us to indirectly quantify the (harmless) magnitude of OA concentrations (0.6-51 pg m-3) in Belgium's coastal air. Overall, this study provides new insights into the enriched aerosolization of marine compounds and proposes a framework to assess their airborne exposure and effects on human health.


Assuntos
Proliferação Nociva de Algas , Água do Mar , Aerossóis , Humanos , Oceanos e Mares , Água
3.
Environ Sci Technol ; 55(23): 15989-16000, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793130

RESUMO

Marine phytoplankton influence the composition of sea spray aerosols (SSAs) by releasing various compounds. The biogenic surfactant dipalmitoylphosphatidylcholine (DPPC) is known to accumulate in the sea surface microlayer, but its aerosolization has never been confirmed. We conducted a 1 year SSA sampling campaign at the Belgian coast and analyzed the SSA composition. We quantified DPPC at a median and maximum air concentration of 7.1 and 33 pg m-3, respectively. This discovery may be of great importance for the field linking ocean processes to human health as DPPC is the major component of human lung surfactant and is used as excipient in medical aerosol therapy. The natural airborne exposure to DPPC seems too low to induce direct human health effects but may facilitate the effects of other marine bioactive compounds. By analyzing various environmental variables in relation to the DPPC air concentration, using a generalized linear model, we established that wave height is a key environmental predictor and that it has an inverse relationship. We also demonstrated that DPPC content in SSAs is positively correlated with enriched aerosolization of Mg2+ and Ca2+. In conclusion, our findings are not only important from a human health perspective but they also advance our understanding of the production and composition of SSAs.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , 1,2-Dipalmitoilfosfatidilcolina , Aerossóis , Humanos , Pulmão , Oceanos e Mares , Tensoativos
4.
Mar Drugs ; 18(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936833

RESUMO

Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health-affecting and potential health-promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS-2B lung cells were exposed to increasing concentrations (ng·L-1 - mg·L-1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof-of-principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway.


Assuntos
Aerossóis/farmacologia , Exposição Ambiental , Pulmão/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Aerossóis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proliferação Nociva de Algas , Humanos , Técnicas In Vitro , Toxinas Marinhas/toxicidade , Venenos de Moluscos , Oxocinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
Environ Sci Technol ; 53(7): 3850-3859, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817885

RESUMO

Over the past decade, significant advances have been made to unravel molecular mechanisms of stress response in different ecotoxicological model species. Within this study, we focus on population level transcriptomic responses of a natural population of Daphnia magna Straus, (1820), to heavy metals. We aim to characterize the population level transcriptomic responses, which include standing genetic variation, and improve our understanding on how populations respond to environmental stress at a molecular level. We studied population level responses to two heavy metals, copper and arsenic, and their binary mixture across time. Transcriptomic patterns identified significantly regulated gene families and genes at the population level including cuticle proteins and resilins. Furthermore, some of these differentially regulated gene families, such as cuticle proteins, were also significantly enriched for genetic variations including SNPs and MNPs. In general, genetic variation was observed in specific gene families, many of which are known to be involved in stress response. Overall, our results indicate that molecular stress responses can be identified within natural populations and that linking molecular mechanisms with genetic variation at the population level could contribute significantly to adverse outcome frameworks.


Assuntos
Arsênio , Metais Pesados , Animais , Cobre , Daphnia , Genoma
6.
Mol Ecol ; 27(4): 886-897, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28746735

RESUMO

Natural habitats are exposed to an increasing number of environmental stressors that cause important ecological consequences. However, the multifarious nature of environmental change, the strength and the relative timing of each stressor largely limit our understanding of biological responses to environmental change. In particular, early response to unpredictable environmental change, critical to survival and fitness in later life stages, is largely uncharacterized. Here, we characterize the early transcriptional response of the keystone species Daphnia magna to twelve environmental perturbations, including biotic and abiotic stressors. We first perform a differential expression analysis aimed at identifying differential regulation of individual genes in response to stress. This preliminary analysis revealed that a few individual genes were responsive to environmental perturbations and they were modulated in a stressor and genotype-specific manner. Given the limited number of differentially regulated genes, we were unable to identify pathways involved in stress response. Hence, to gain a better understanding of the genetic and functional foundation of tolerance to multiple environmental stressors, we leveraged the correlative nature of networks and performed a weighted gene co-expression network analysis. We discovered that approximately one-third of the Daphnia genes, enriched for metabolism, cell signalling and general stress response, drives transcriptional early response to environmental stress and it is shared among genetic backgrounds. This initial response is followed by a genotype- and/or condition-specific transcriptional response with a strong genotype-by-environment interaction. Intriguingly, genotype- and condition-specific transcriptional response is found in genes not conserved beyond crustaceans, suggesting niche-specific adaptation.


Assuntos
Daphnia/genética , Redes Reguladoras de Genes , Transcrição Gênica , Animais , Sequência Conservada , Regulação da Expressão Gênica , Genoma , Genótipo , Família Multigênica
7.
Environ Sci Technol ; 52(9): 5479-5489, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641900

RESUMO

The use of classical mixture toxicity models to predict the combined effects of environmental stressors based on toxicogenomics (OMICS) data is still in its infancy. Although several studies have made attempts to implement mixture modeling in OMICS analysis to understand the low-dose interactions of stressors, it is not clear how interactions occur at the molecular level and how results generated from such approaches can be better used to inform future studies and cumulative hazard assessment of multiple stressors. The present work was therefore conducted to propose a conceptual approach for combined effect assessment using global gene expression data, as illustrated by a case study on assessment of combined effects of gamma radiation and depleted uranium (DU) on Atlantic salmon ( Salmo salar). Implementation of the independent action (IA) model in reanalysis of a previously published microarray gene expression dataset was performed to describe gene expression patterns of combined effects and identify key gene sets and pathways that were relevant for understanding the interactive effects of these stressors. By using this approach, 3120 differentially expressed genes (DEGs) were found to display additive effects, whereas 279 (273 synergistic, 6 antagonistic) were found to deviate from additivity. Functional analysis further revealed that multiple toxicity pathways, such as oxidative stress responses, cell cycle regulation, lipid metabolism, and immune responses were enriched by DEGs showing synergistic gene expression. A key toxicity pathway of DNA damage leading to enhanced tumorigenesis signaling is highlighted and discussed in detail as an example of how to take advantage of the approach. Furthermore, a conceptual workflow describing the integration of combined effect modeling, OMICS analysis, and bioinformatics is proposed. The present study presents a conceptual framework for utilizing OMICS data in combined effect assessment and may provide novel strategies for dealing with data analysis and interpretation of molecular responses of multiple stressors.


Assuntos
Salmo salar , Urânio , Raios gama , Perfilação da Expressão Gênica , Toxicogenética , Transcrição Gênica
8.
Environ Sci Technol ; 52(7): 4331-4339, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29486114

RESUMO

Our aim was to investigate epigenetic changes in Daphnia magna after a 25-day chronic external γ irradiation (generation F0 exposed to 6.5 µGy·h-1 or 41.3 mGy·h-1) and their potential inheritance by subsequent recovering generations, namely, F2 (exposed as germline cells in F1 embryos) and F3 (the first truly unexposed generation). Effects on survival, growth, and reproduction were observed and DNA was extracted for whole-genome bisulfite sequencing in all generations. Results showed effects on reproduction in F0 but no effect in the subsequent generations F1, F2, and F3. In contrast, we observed significant methylation changes at specific CpG positions in every generation independent of dose rate, with a majority of hypomethylation. Some of these changes were shared between dose rates and between generations. Associated gene functions included gene families and genes that were previously shown to play roles during exposure to ionizing radiation. Common methylation changes detected between generations F2 and F3 clearly showed that epigenetic modifications can be transmitted to unexposed generations, most likely through the germline, with potential implications for environmental risk.


Assuntos
Metilação de DNA , Daphnia , Animais , Epigênese Genética , Raios gama , Reprodução
9.
Environ Sci Technol ; 52(17): 10114-10123, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30113818

RESUMO

Epigenetic mechanisms have been found to play important roles in environmental stress response and regulation. These can, theoretically, be transmitted to future unexposed generations, yet few studies have shown persisting stress-induced transgenerational effects, particularly in invertebrates. Here, we focus on the aquatic microcrustacean Daphnia, a parthenogenetic model species, and its response to salinity stress. Salinity is a serious threat to freshwater ecosystems and a relevant form of environmental perturbation affecting freshwater ecosystems. We exposed one generation of D. magna to high levels of salinity (F0) and found that the exposure provoked specific methylation patterns that were transferred to the three consequent nonexposed generations (F1, F2, and F3). This was the case for the hypomethylation of six protein-coding genes with important roles in the organisms' response to environmental change: DNA damage repair, cytoskeleton organization, and protein synthesis. This suggests that epigenetic changes in Daphnia are particularly targeted to genes involved in coping with general cellular stress responses. Our results highlight that epigenetic marks are affected by environmental stressors and can be transferred to subsequent unexposed generations. Epigenetic marks could therefore prove to be useful indicators of past or historic pollution in this parthenogenetic model system. Furthermore, no life history costs seem to be associated with the maintenance of hypomethylation across unexposed generations in Daphnia following a single stress exposure.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , DNA , Ecossistema , Estresse Salino
10.
Anal Chem ; 89(7): 4161-4168, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28256828

RESUMO

In this work, the three-dimensional elemental distribution profile within the freshwater crustacean Ceriodaphnia dubia was constructed at a spatial resolution down to 5 µm via a data fusion approach employing state-of-the-art laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS) and laboratory-based absorption microcomputed tomography (µ-CT). C. dubia was exposed to elevated Cu, Ni, and Zn concentrations, chemically fixed, dehydrated, stained, and embedded, prior to µ-CT analysis. Subsequently, the sample was cut into 5 µm thin sections that were subjected to LA-ICP-TOFMS imaging. Multimodal image registration was performed to spatially align the 2D LA-ICP-TOFMS images relative to the corresponding slices of the 3D µ-CT reconstruction. Mass channels corresponding to the isotopes of a single element were merged to improve the signal-to-noise ratios within the elemental images. In order to aid the visual interpretation of the data, LA-ICP-TOFMS data were projected onto the µ-CT voxels representing tissue. Additionally, the image resolution and elemental sensitivity were compared to those obtained with synchrotron radiation based 3D confocal µ-X-ray fluorescence imaging upon a chemically fixed and air-dried C. dubia specimen.


Assuntos
Imageamento Tridimensional , Imagem Multimodal , Animais , Cladocera , Cobre/análise , Terapia a Laser , Espectrometria de Massas , Níquel/análise , Distribuição Tecidual , Microtomografia por Raio-X , Zinco/análise
11.
Environ Sci Technol ; 51(21): 12898-12907, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29023098

RESUMO

Given the risk of environmental pollution by pharmaceutical compounds and the effects of these compounds on exposed ecosystems, ecologically relevant and realistic assessments are required. However, many studies have been mostly focused on individual responses in a single generation exposed to one-effect concentrations. Here, transcriptional responses of the crustacean Daphnia magna to the antibiotic tetracycline across multiple generations and effect concentrations were investigated. The results demonstrated that tetracycline induced different transcriptional responses of daphnids that were dependent on dose and generation. For example, reproduction-related expressed sequence tags (ESTs), including vitellogenin, were distinctly related to the dose-dependent tetracycline exposure, whereas multigenerational exposure induced significant change of molting-related ESTs such as cuticle protein. A total of 65 ESTs were shared in all contrasts, suggesting a conserved mechanism of tetracycline toxicity regardless of exposure concentration or time. Most of them were associated with general stress responses including translation, protein and carbohydrate metabolism, and oxidative phosphorylation. In addition, effects across the dose-response curve showed higher correlative connections among transcriptional, physiological, and individual responses than multigenerational effects. In the multigenerational exposure, the connectivity between adjacent generations decreased with increasing generation number. The results clearly highlight that exposure concentration and time trigger different mechanisms and functions, providing further evidence that multigenerational and dose-response effects cannot be neglected in environmental risk assessment.


Assuntos
Antibacterianos/toxicidade , Daphnia , Tetraciclina/toxicidade , Animais , Muda , Reprodução , Poluentes Químicos da Água
12.
Environ Sci Technol ; 51(8): 4615-4623, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28339194

RESUMO

Metal contamination generally occurs as mixtures. However, it is yet unresolved how to address metal mixtures in risk assessment. Therefore, using consistent methodologies, we have set up experiments to identify which mixture model applies best at low-level effects, i.e., the independent action (IA) or concentration addition (CA) reference model. The toxicity of metal mixtures (Ni, Zn, Cu, Cd, and Pb) to Daphnia magna, Ceriodaphnia dubia, and Hordeum vulgare was investigated in different waters or soils, totaling 30 different experiments. Some mixtures of different metals, each individually causing <10% inhibition, yielded much larger inhibition (up to 66%) when dosed in combination. In general, IA was most accurate in predicting mixture toxicity, while CA was the most conservative. At low-effect levels important in risk assessments, CA overestimated mixture toxicity to daphnids and H. vulgare, on average, with a factor 1.4 to 3.6. Observed mixture interactions could be related to bioavailability or by competition interactions, either for binding sites of dissolved organic carbon or for biotic ligand sites. Our study suggests that the current metal-by-metal approach in risk evaluations may not be conservative enough for metal mixtures.


Assuntos
Daphnia/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Cladocera/efeitos dos fármacos , Modelos Teóricos , Medição de Risco , Poluentes Químicos da Água/toxicidade
13.
Environ Sci Technol ; 51(2): 924-931, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27983812

RESUMO

Little is known about the influence that environmental stressors may have on genome-wide methylation patterns, and to what extent epigenetics may be involved in environmental stress response. Yet, studies of methylation patterns under stress could provide crucial insights on stress response and toxicity pathways. Here, we focus on genome-wide methylation patterns in the microcrustacean Daphnia magna, a model organism in ecotoxicology and risk assessment, exposed to the toxic cyanobacterium Microcystis aeruginosa. Bisulfite sequencing of exposed and control animals highlighted differential methylation patterns in Daphnia upon exposure to Microcystis primarily in exonic regions. These patterns are enriched for serine/threonine amino acid codons and genes related to protein synthesis, transport and degradation. Furthermore, we observed that genes with differential methylation corresponded well with genes susceptible to alternative splicing in response to Microcystis stress. Overall, our results suggest a complex mechanistic response in Daphnia characterized by interactions between DNA methylation and gene regulation mechanisms. These results underscore that DNA methylation is modulated by environmental stress and can also be an integral part of the toxicity response in our study species.


Assuntos
Daphnia/genética , Microcystis/metabolismo , Aminoácidos/metabolismo , Animais , Daphnia/metabolismo , Serina , Treonina
14.
Environ Res ; 151: 663-670, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27619211

RESUMO

Pollution and temperature increase are two of the most important stressors that aquatic organisms are facing. Exposure to elevated temperatures and metal contamination both induce heat shock proteins (HSPs), which may thus be involved in the induced cross-tolerance in various organisms. This study aimed to test the hypothesis that exposure to a non-lethal heat shock (NLHS) causes an increased tolerance to subsequent metal exposure. Using gnotobiotic cultures of the brine shrimp Artemia franciscana, the tolerance to Cd and Zn acute exposures was tested after a prior NLHS treatment (30min exposure to 37°C). The effects of NLHS and metal exposure were also assessed by measuring 70kDa-HSPs production, along with the analysis of epigenetic markers such as DNA methylation and histone H3 and histone H4 acetylation. Our results showed that heat-shocked Artemia had increased acute tolerance to Cd and Zn. However, different patterns of HSPs were observed between the two metal compounds and no epigenetic alterations were observed in response to heat shock or metal exposure. These results suggest that HSP production is a phenotypically plastic trait with a potential role in temperature-induced tolerance to metal exposure.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Artemia/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta/efeitos adversos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilação , Animais , Artemia/genética , Artemia/metabolismo , Western Blotting , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Modelos Teóricos
15.
Regul Toxicol Pharmacol ; 81: 47-56, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27461040

RESUMO

This paper presents the results from two ring-tests addressing the feasibility, robustness and reproducibility of a reproduction toxicity test with the freshwater gastropod Lymnaea stagnalis (RENILYS strain). Sixteen laboratories (from inexperienced to expert laboratories in mollusc testing) from nine countries participated in these ring-tests. Survival and reproduction were evaluated in L. stagnalis exposed to cadmium, tributyltin, prochloraz and trenbolone according to an OECD draft Test Guideline. In total, 49 datasets were analysed to assess the practicability of the proposed experimental protocol, and to estimate the between-laboratory reproducibility of toxicity endpoint values. The statistical analysis of count data (number of clutches or eggs per individual-day) leading to ECx estimation was specifically developed and automated through a free web-interface. Based on a complementary statistical analysis, the optimal test duration was established and the most sensitive and cost-effective reproduction toxicity endpoint was identified, to be used as the core endpoint. This validation process and the resulting optimized protocol were used to consolidate the OECD Test Guideline for the evaluation of reproductive effects of chemicals in L. stagnalis.


Assuntos
Lymnaea/efeitos dos fármacos , Projetos de Pesquisa , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Cloreto de Cádmio/toxicidade , Tamanho da Ninhada/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Fidelidade a Diretrizes , Guias como Assunto , Imidazóis/toxicidade , Modelos Estatísticos , Óvulo/efeitos dos fármacos , Análise de Regressão , Reprodutibilidade dos Testes , Reprodução/efeitos dos fármacos , Projetos de Pesquisa/normas , Medição de Risco , Fatores de Tempo , Testes de Toxicidade/normas , Acetato de Trembolona/toxicidade , Compostos de Trialquitina/toxicidade
16.
Ecotoxicology ; 25(10): 1858-1866, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699564

RESUMO

The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.


Assuntos
Ecotoxicologia , Poluentes Ambientais , Monitoramento Ambiental , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos
17.
Mol Ecol ; 24(8): 1844-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25754071

RESUMO

Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles, whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of nonlineage-specific genes were conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment-specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families.


Assuntos
Cianobactérias , Daphnia/genética , Transcriptoma , Animais , Dieta , Meio Ambiente , Perfilação da Expressão Gênica , Estresse Fisiológico
18.
Environ Sci Technol ; 49(15): 9298-307, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26130190

RESUMO

Although natural populations can harbor evolutionary potential to adapt genetically to chemical stress, it is often thought that natural selection leads to a general reduction of genetic diversity and involves costs. Here, a 10 week microevolution experiment was conducted with a genetically diverse and representative sample of one natural Daphnia magna population that was exposed to copper and zinc. Both Cu- and Zn-selected populations developed a significantly higher metal tolerance (i.e., genetic adaptation), indicated by higher reproduction probabilities of clonal lines in Cu and Zn exposures than observed for the original and control populations. The complete recovery of the population densities after 10 weeks of Zn selection (following an initial decrease of 74%) illustrates an example of evolutionary rescue. Microsatellite genotyping revealed a decrease in clonal diversity but no change in allelic richness, and showed an excess in heterozygosity in the Cu- and Zn-selected populations compared to the control and original populations. The excess heterozygosity in metal-selected populations that we observed has important consequences for risk assessment, as it contributes to the maintenance of a higher allelic diversity under multigenerational chemical exposure. This study is, to our knowledge, the first report of an increase in heterozygosity following multigenerational exposure to metal stress, despite a decline in clonal diversity. In a follow-up study with the Zn-selected populations, we observed no effect of Zn selection on the tolerance to heat and cyanobacteria. However, we observed higher tolerance to Cd in the Zn-selected than in the original and control populations if the 20% effective concentration of Cd was considered (cross-tolerance). Our results suggest only limited costs of adaptation but future research is needed to evaluate the adaptive potential of metal-selected populations to novel stressors and to determine to what extent increased heterozygosity is preserved after genetic recombination following periods of sexual reproduction.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/genética , Metais/toxicidade , Aclimatação , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Células Clonais , Análise Discriminante , Feminino , Variação Genética/efeitos dos fármacos , Heterozigoto , Repetições de Microssatélites/genética , Densidade Demográfica , Análise de Componente Principal , Reprodução/efeitos dos fármacos , Reprodução/genética
19.
Environ Sci Technol ; 48(6): 3513-22, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24552364

RESUMO

The present study investigated the possibilities and limitations of implementing a genome-wide transcription-based approach that takes into account genetic and environmental variation to better understand the response of natural populations to stressors. When exposing two different Daphnia pulex genotypes (a cadmium-sensitive and a cadmium-tolerant one) to cadmium, the toxic cyanobacteria Microcystis aeruginosa, and their mixture, we found that observations at the transcriptomic level do not always explain observations at a higher level (growth, reproduction). For example, although cadmium elicited an adverse effect at the organismal level, almost no genes were differentially expressed after cadmium exposure. In addition, we identified oxidative stress and polyunsaturated fatty acid metabolism-related pathways, as well as trypsin and neurexin IV gene-families as candidates for the underlying causes of genotypic differences in tolerance to Microcystis. Furthermore, the whole-genome transcriptomic data of a stressor mixture allowed a better understanding of mixture responses by evaluating interactions between two stressors at the gene-expression level against the independent action baseline model. This approach has indicated that ubiquinone pathway and the MAPK serine-threonine protein kinase and collagens gene-families were enriched with genes showing an interactive effect in expression response to exposure to the mixture of the stressors, while transcription and translation-related pathways and gene-families were mostly related with genotypic differences in interactive responses to this mixture. Collectively, our results indicate that the methods we employed may improve further characterization of the possibilities and limitations of transcriptomics approaches in the adverse outcome pathway framework and in predictions of multistressor effects on natural populations.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Microcystis/patogenicidade , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/toxicidade , Daphnia/metabolismo , Daphnia/microbiologia , Perfilação da Expressão Gênica , Genótipo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia
20.
Environ Sci Technol ; 48(1): 698-705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24308862

RESUMO

Larvae of Mytilus spp. are among the most Cu sensitive marine species. In this study we assessed the combined effect of salinity and dissolved organic carbon (DOC) on Cu accumulation on mussel larvae. Larvae were exposed for 48 h to three Cu concentrations in each of nine salinity/DOC treatments. Synchrotron radiation X-ray fluorescence was used to determine the Cu concentration in 36 individual larvae with a spatial resolution of 10 × 10 µm. Cu body burden concentrations varied between 1.1 and 27.6 µg/g DW larvae across all treatments and Cu was homogeneously distributed at this spatial resolution level. Our results indicate decreasing Cu accumulation with increasing DOC concentrations which can be explained by an increase in Cu complexation. In contrast, salinity had a nonlinear effect on Cu. This cannot be explained by copper speciation or competition processes and suggests a salinity-induced alteration in physiology.


Assuntos
Cobre/farmacocinética , Mytilus/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Organismos Aquáticos , Carbono/análise , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Mytilus/efeitos dos fármacos , Mytilus/embriologia , Salinidade , Espectrometria por Raios X/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA