Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 52(D1): D900-D908, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933854

RESUMO

Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).


Assuntos
Envelhecimento , Bases de Dados Genéticas , Genômica , Animais , Humanos , Envelhecimento/genética , Senescência Celular , Longevidade/genética
2.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31996377

RESUMO

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Assuntos
Galactose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lítio/farmacologia , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo , Galactose/metabolismo , Galactosefosfatos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 47(8): 3957-3969, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30838421

RESUMO

RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose is L4440. However, it has been noticed that sequences within L4440 may elicit unspecific effects. Here, we provide a comprehensive characterization of these effects and their mechanisms and describe new unexpected phenotypes uncovered by the administration of unspecific exogenous dsRNA. An example involves dsRNA produced by the multiple cloning site (MCS) of L4440, which shares complementary sequences with some widely used reporter vectors and induces partial transgene silencing via the canonical and antiviral RNAi pathway. Going beyond transgene silencing, we found that the reduced embryonic viability of mir-35-41(gk262) mutants is partially reversed by exogenous dsRNA via a mechanism that involves canonical RNAi. These results indicate cross-regulation between different small RNA pathways in C. elegans to regulate embryonic viability. Recognition of the possible unspecific effects elicited by RNAi vectors is important for rigorous interpretation of results from RNAi-based experiments.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero , Escherichia coli/genética , Escherichia coli/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Fenótipo , Plasmídeos/química , Plasmídeos/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1403-1409, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213126

RESUMO

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease.


Assuntos
Galactose , Galactosemias/metabolismo , Modelos Biológicos , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Galactosemias/genética , Glicogênio/genética , Glicogênio/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
BMC Biol ; 14(1): 87, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717342

RESUMO

BACKGROUND: The General Control Nonderepressible 2 (GCN2) kinase is a conserved member of the integrated stress response (ISR) pathway that represses protein translation and helps cells to adapt to conditions of nutrient shortage. As such, GCN2 is required for longevity and stress resistance induced by dietary restriction (DR). IMPACT is an ancient protein that inhibits GCN2. RESULTS: Here, we tested whether IMPACT down-regulation mimics the effects of DR in C. elegans. Knockdown of the C. elegans IMPACT homolog impt-1 activated the ISR pathway and increased lifespan and stress resistance of worms in a gcn-2-dependent manner. Impt-1 knockdown exacerbated DR-induced longevity and required several DR-activated transcription factors to extend lifespan, among them SKN-1 and DAF-16, which were induced during larval development and adulthood, respectively, in response to impt-1 RNAi. CONCLUSIONS: IMPACT inhibits the ISR pathway, thus limiting the activation of stress response factors that are beneficial during aging and required under DR.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Quinases/genética , Interferência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Trends Cell Biol ; 34(3): 176-179, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38008607

RESUMO

Ageing is a malleable process influenced by the environment. Recent research reveals that neurons interact with peripheral organs to regulate metabolism and longevity by responding to olfactory cues through specific pathways, such as the unfolded protein response (UPR) and microRNAs. Here, we examine the significance of these findings.


Assuntos
Longevidade , Resposta a Proteínas não Dobradas , Humanos , Envelhecimento/metabolismo , Neurônios , Proteostase
10.
Gene ; 895: 148014, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984536

RESUMO

Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferência de RNA , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Membrana/genética , Mamíferos/genética
11.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594249

RESUMO

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; : 167340, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986816

RESUMO

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.

13.
Biol Open ; 12(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36794708

RESUMO

During aging, animals experience a decline in proteostasis activity, including loss of stress-response activation, culminating in the accumulation of misfolded proteins and toxic aggregates, which are causal in the onset of some chronic diseases. Finding genetic and pharmaceutical treatments that can increase organismal proteostasis and lengthen life is an ongoing goal of current research. The regulation of stress responses by cell non-autonomous mechanisms appears to be a potent way to impact organismal healthspan. In this Review, we cover recent findings in the intersection of proteostasis and aging, with a special focus on articles and preprints published between November 2021 and October 2022. A significant number of papers published during this time increased our understanding of how cells communicate with each other during proteotoxic stress. Finally, we also draw attention to emerging datasets that can be explored to generate new hypotheses that explain age-related proteostasis collapse.


Assuntos
Envelhecimento , Proteostase , Animais , Proteostase/fisiologia , Envelhecimento/metabolismo , Proteínas/metabolismo
14.
Nat Aging ; 3(8): 938-947, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500972

RESUMO

Animals rely on chemosensory cues to survive in pathogen-rich environments. In Caenorhabditis elegans, pathogenic bacteria trigger aversive behaviors through neuronal perception and activate molecular defenses throughout the animal. This suggests that neurons can coordinate the activation of organism-wide defensive responses upon pathogen perception. In this study, we found that exposure to volatile pathogen-associated compounds induces activation of the endoplasmic reticulum unfolded protein response (UPRER) in peripheral tissues after xbp-1 splicing in neurons. This odorant-induced UPRER activation is dependent upon DAF-7/transforming growth factor beta (TGF-ß) signaling and leads to extended lifespan and enhanced clearance of toxic proteins. Notably, rescue of the DAF-1 TGF-ß receptor in RIM/RIC interneurons is sufficient to significantly recover UPRER activation upon 1-undecene exposure. Our data suggest that the cell non-autonomous UPRER rewires organismal proteostasis in response to pathogen detection, pre-empting proteotoxic stress. Thus, chemosensation of particular odors may be a route to manipulation of stress responses and longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Transformador beta/metabolismo , Resposta a Proteínas não Dobradas , Caenorhabditis elegans/metabolismo
15.
Front Aging ; 3: 1044556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389122

RESUMO

The proteome of a cell helps to define its functional specialization. Most proteins must be translated and properly folded to ensure their biological function, but with aging, animals lose their ability to maintain a correctly folded proteome. This leads to the accumulation of protein aggregates, decreased stress resistance, and the onset of age-related disorders. The unfolded protein response of the endoplasmic reticulum (UPRER) is a central protein quality control mechanism, the function of which is known to decline with age. Here, we show that age-related UPRER decline in Caenorhabditis elegans occurs at the onset of the reproductive period and is caused by a failure in IRE-1 endoribonuclease activities, affecting both the splicing of xbp-1 mRNA and regulated Ire1 dependent decay (RIDD) activity. Animals with a defect in germline development, previously shown to rescue the transcriptional activity of other stress responses during aging, do not show restored UPRER activation with age. This underlines the mechanistic difference between age-associated loss of UPRER activation and that of other stress responses in this system, and uncouples reproductive status from the activity of somatic maintenance pathways. These observations may aid in the development of strategies that aim to overcome the proteostasis decline observed with aging.

16.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166389, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301088

RESUMO

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.


Assuntos
Galactosemias , Galactose/metabolismo , Galactose/farmacologia , Galactosemias/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
17.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33292815

RESUMO

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

18.
Mol Metab ; 29: 124-135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31668384

RESUMO

OBJECTIVE: Dietary restriction (DR) improves health and prolongs lifespan in part by upregulating type III endoribonuclease DICER in adipose tissue. In this study, we aimed to specifically test which missing dietary component was responsible for DICER upregulation. METHODS: We performed a nutrient screen in mouse preadipocytes and validated the results in vivo using different kinds of dietary interventions in wild type or genetically modified mice and worms, also testing the requirement of DICER on the effects of the diets. RESULTS: We found that sulfur amino acid restriction (i.e., methionine or cysteine) is sufficient to increase Dicer mRNA expression in preadipocytes. Consistently, while DR increases DICER expression in adipose tissue of mice, this effect is blunted by supplementation of the diet with methionine, cysteine, or casein, but not with a lipid or carbohydrate source. Accordingly, dietary methionine or protein restriction mirrors the effects of DR. These changes are associated with alterations in serum adiponectin. We also found that DICER controls and is controlled by adiponectin. In mice, DICER plays a role in methionine restriction-induced upregulation of Ucp1 in adipose tissue. In C. elegans, DR and a model of methionine restriction also promote DICER expression in the intestine (an analog of the adipose tissue) and prolong lifespan in a DICER-dependent manner. CONCLUSIONS: We propose an evolutionary conserved mechanism in which dietary sulfur amino acid restriction upregulates DICER levels in adipose tissue leading to beneficial health effects.


Assuntos
Cisteína/deficiência , RNA Helicases DEAD-box/metabolismo , Metionina/deficiência , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo Bege/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Dieta/métodos , Dieta/veterinária , Mucosa Intestinal/metabolismo , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteína Desacopladora 1/metabolismo , Regulação para Cima
19.
Redox Biol ; 18: 84-92, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986212

RESUMO

Alterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Enoxacino/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Caenorhabditis elegans/fisiologia , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Oxirredução/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia
20.
Dis Model Mech ; 7(1): 55-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24077966

RESUMO

Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.


Assuntos
Galactosemias/enzimologia , Galactosemias/genética , Regulação Fúngica da Expressão Gênica , Resposta a Proteínas não Dobradas , Processamento Alternativo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Galactoquinase/metabolismo , Galactose/metabolismo , Galactosefosfatos/química , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mutação/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Dobramento de Proteína , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA